|
|
A116680
|
|
Number of even parts in all partitions of n into distinct parts.
|
|
6
|
|
|
0, 0, 1, 1, 1, 2, 4, 5, 5, 8, 11, 14, 18, 23, 29, 37, 44, 55, 69, 83, 102, 124, 148, 178, 213, 253, 300, 356, 421, 494, 582, 680, 793, 926, 1074, 1246, 1446, 1668, 1922, 2215, 2545, 2918, 3345, 3823, 4366, 4982, 5668, 6445, 7321, 8300, 9401, 10639, 12021, 13566
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
|
|
FORMULA
|
a(n) = Sum_{k >= 0} k*A116679(n,k).
G.f.: Product_{j >= 1} (1+x^j) * Sum_{k >= 1} (x^(2*k)/(1+x^(2*k)).
For n > 0, a(n) = A015723(n) - A116676(n). - Vaclav Kotesovec, May 26 2018
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018
|
|
EXAMPLE
|
a(9)=8 because in the partitions of 9 into distinct parts, namely, [9], [8,1], [7,2], [6,3], [6,2,1], [5,4], [5,3,1], and [4,3,2], we have a total of 8 even parts. [edited by Rishi Advani, Jun 07 2019]
|
|
MAPLE
|
f:=product(1+x^j, j=1..70)*sum(x^(2*j)/(1+x^(2*j)), j=1..40): fser:=series(f, x=0, 65): seq(coeff(fser, x, n), n=0..60);
|
|
MATHEMATICA
|
With[{m = 25}, CoefficientList[Series[Product[1+x^j, {j, 1, 4*m}]* Sum[x^(2*k)/(1+x^(2*k)), {k, 1, 2*m}], {x, 0, 3*m}], x]] (* G. C. Greubel, Jun 07 2019 *)
|
|
PROG
|
(PARI) my(m=25); my(x='x+O('x^(3*m))); concat([0, 0], Vec( prod(j=1, 4*m, 1+x^j)*sum(k=1, 2*m, x^(2*k)/(1+x^(2*k))) )) \\ G. C. Greubel, Jun 07 2019
(MAGMA) m:=25; R<x>:=PowerSeriesRing(Integers(), 3*m); [0, 0] cat Coefficients(R!( (&*[1+x^j: j in [1..4*m]])*(&+[x^(2*k)/(1+x^(2*k)): k in [1..2*m]]) )); // G. C. Greubel, Jun 07 2019
(Sage) m=25; ( product(1+x^j for j in (1..4*m))*sum(x^(2*k)/(1+x^(2*k)) for k in (1..2*m)) ).series(x, 3*m).coefficients(x, sparse=False) # G. C. Greubel, Jun 07 2019
|
|
CROSSREFS
|
Cf. A116679, A305121, A305122.
Cf. A305082, A015723, A090867, A067588, A116676.
Sequence in context: A026404 A327326 A170882 * A138083 A181524 A240568
Adjacent sequences: A116677 A116678 A116679 * A116681 A116682 A116683
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Emeric Deutsch, Feb 22 2006
|
|
STATUS
|
approved
|
|
|
|