This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116680 Number of even parts in all partitions of n into distinct parts. 6
 0, 0, 1, 1, 1, 2, 4, 5, 5, 8, 11, 14, 18, 23, 29, 37, 44, 55, 69, 83, 102, 124, 148, 178, 213, 253, 300, 356, 421, 494, 582, 680, 793, 926, 1074, 1246, 1446, 1668, 1922, 2215, 2545, 2918, 3345, 3823, 4366, 4982, 5668, 6445, 7321, 8300, 9401, 10639, 12021, 13566 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 FORMULA a(n) = Sum_{k >= 0} k*A116679(n,k). G.f.: Product_{j >= 1} (1+x^j) * Sum_{k >= 1} (x^(2*k)/(1+x^(2*k)). For n > 0, a(n) = A015723(n) - A116676(n). - Vaclav Kotesovec, May 26 2018 a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018 EXAMPLE a(9)=8 because in the partitions of 9 into distinct parts, namely, [9], [8,1], [7,2], [6,3], [6,2,1], [5,4], [5,3,1], and [4,3,2], we have a total of 8 even parts. [edited by Rishi Advani, Jun 07 2019] MAPLE f:=product(1+x^j, j=1..70)*sum(x^(2*j)/(1+x^(2*j)), j=1..40): fser:=series(f, x=0, 65): seq(coeff(fser, x, n), n=0..60); MATHEMATICA With[{m = 25}, CoefficientList[Series[Product[1+x^j, {j, 1, 4*m}]* Sum[x^(2*k)/(1+x^(2*k)), {k, 1, 2*m}], {x, 0, 3*m}], x]] (* G. C. Greubel, Jun 07 2019 *) PROG (PARI) my(m=25); my(x='x+O('x^(3*m))); concat([0, 0], Vec( prod(j=1, 4*m, 1+x^j)*sum(k=1, 2*m, x^(2*k)/(1+x^(2*k))) )) \\ G. C. Greubel, Jun 07 2019 (MAGMA) m:=25; R:=PowerSeriesRing(Integers(), 3*m); [0, 0] cat Coefficients(R!( (&*[1+x^j: j in [1..4*m]])*(&+[x^(2*k)/(1+x^(2*k)): k in [1..2*m]]) )); // G. C. Greubel, Jun 07 2019 (Sage) m=25; ( product(1+x^j for j in (1..4*m))*sum(x^(2*k)/(1+x^(2*k)) for k in (1..2*m)) ).series(x, 3*m).coefficients(x, sparse=False) # G. C. Greubel, Jun 07 2019 CROSSREFS Cf. A116679, A305121, A305122. Cf. A305082, A015723, A090867, A067588, A116676. Sequence in context: A026404 A327326 A170882 * A138083 A181524 A240568 Adjacent sequences:  A116677 A116678 A116679 * A116681 A116682 A116683 KEYWORD nonn AUTHOR Emeric Deutsch, Feb 22 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 04:15 EST 2019. Contains 329885 sequences. (Running on oeis4.)