login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060018 a(n) = floor(2*sqrt(n-2)). 4
0, 2, 2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

LINKS

Harry J. Smith, Table of n, a(n) for n = 2..1000

J. R. Griggs, Spanning subset sums for finite Abelian groups, Discrete Math., 229 (2001), 89-99.

Matthew Hyatt, Marina Skyers, On the Increases of the Sequence floor(k*sqrt(n)), Electronic Journal of Combinatorial Number Theory, Volume 15 #A17.

FORMULA

a(n) = floor(2*sqrt(n-2)) = floor(sqrt(4*n-8)). - Charles R Greathouse IV, Nov 26 2015

G.f.: (Sum_{k>=1} x^(k^2+2) + x^(k^2-k+3))/(1-x)

= (x^2 * (Theta3(x)-1) + x^(11/4) * Theta2(x))/(2-2*x) where Theta2 and Theta3 are Jacobi theta functions. - Robert Israel, Dec 09 2015

MATHEMATICA

Floor[2*Sqrt[Range[2, 80]-2]] (* Harvey P. Dale, Aug 19 2015 *)

PROG

(PARI) { default(realprecision, 100); for (n=2, 1000, write("b060018.txt", n, " ", floor(2*sqrt(n - 2))); ) } \\ Harry J. Smith, Jul 01 2009

(PARI) a(n)=sqrtint(4*n-8) \\ Charles R Greathouse IV, Aug 23 2011

(MAGMA) [Floor(2*Sqrt(n-2)): n in [2..100]]; // Vincenzo Librandi, Dec 09 2015

CROSSREFS

Cf. A060019.

Sequence in context: A034136 A189638 A097535 * A089576 A076642 A112325

Adjacent sequences:  A060015 A060016 A060017 * A060019 A060020 A060021

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 17 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 20:04 EST 2019. Contains 320262 sequences. (Running on oeis4.)