This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060018 a(n) = floor(2*sqrt(n-2)). 4
 0, 2, 2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS Harry J. Smith, Table of n, a(n) for n = 2..1000 J. R. Griggs, Spanning subset sums for finite Abelian groups, Discrete Math., 229 (2001), 89-99. Matthew Hyatt, Marina Skyers, On the Increases of the Sequence floor(k*sqrt(n)), Electronic Journal of Combinatorial Number Theory, Volume 15 #A17. FORMULA a(n) = floor(2*sqrt(n-2)) = floor(sqrt(4*n-8)). - Charles R Greathouse IV, Nov 26 2015 G.f.: (Sum_{k>=1} x^(k^2+2) + x^(k^2-k+3))/(1-x) = (x^2 * (Theta3(x)-1) + x^(11/4) * Theta2(x))/(2-2*x) where Theta2 and Theta3 are Jacobi theta functions. - Robert Israel, Dec 09 2015 MATHEMATICA Floor[2*Sqrt[Range[2, 80]-2]] (* Harvey P. Dale, Aug 19 2015 *) PROG (PARI) { default(realprecision, 100); for (n=2, 1000, write("b060018.txt", n, " ", floor(2*sqrt(n - 2))); ) } \\ Harry J. Smith, Jul 01 2009 (PARI) a(n)=sqrtint(4*n-8) \\ Charles R Greathouse IV, Aug 23 2011 (MAGMA) [Floor(2*Sqrt(n-2)): n in [2..100]]; // Vincenzo Librandi, Dec 09 2015 CROSSREFS Cf. A060019. Sequence in context: A034136 A189638 A097535 * A089576 A076642 A112325 Adjacent sequences:  A060015 A060016 A060017 * A060019 A060020 A060021 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 17 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 20:04 EST 2019. Contains 320262 sequences. (Running on oeis4.)