OFFSET
1,2
COMMENTS
Also numbers that need at most one (3x+1) operation to reach 1 in the Collatz conjecture.
Also, terms of A023758 divisible by 3, divided by 3 (conjectured).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
FORMULA
Sum_{n>=1} 1/a(n) = 2 * A321873 = 2.5265861162... . - Amiram Eldar, Jul 19 2022
MATHEMATICA
Select[Range[2600], IntegerQ@ Log[4, 3 # + 1] &@ NestWhile[#/2 &, #, IntegerQ[#/2] &] &] (* Michael De Vlieger, May 12 2017 *)
seq[max_] := Module[{kmax = Floor[Log[4, 3*max+1]], s = {}, s1, odd}, Do[odd = (4^k-1)/3; s1 = 2^Range[0, Floor[Log2[max/odd]]] * odd; s = Join[s, s1], {k, 1, kmax}]; Union[s]]; seq[10240] (* Amiram Eldar, Aug 31 2024 *)
PROG
(PARI) for(n=2, 2000, o=3*n/2^valuation(n, 2)+1; b=ispower(o); if(b&&round(sqrtn(o, b\2))==4, print1(n, ", ")))
(Python)
for a in range(2, 17):
print()
for b in range(a - 2, -1, -2):
print(((1 << a) - (1 << b)) // 3, end=", ")
# André Hallqvist, Jul 25 2019
# This script shows the sequence as an irregular table whose main diagonal is A000975, called the "Lichtenberg sequence" by Andreas M. Hinz. - Peter Luschny, Jul 10 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Nov 18 2010
STATUS
approved