login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023758 Numbers of the form 2^i - 2^j with i >= j. 24
0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 192, 224, 240, 248, 252, 254, 255, 256, 384, 448, 480, 496, 504, 508, 510, 511, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Numbers whose digits in base 2 are in nonincreasing order.

Might be called "nialpdromes".

Subset of A077436. Proof: Since a(n) is of form (2^i-1)2^j, i,j>=0, a(n)^2 = [2^(2i)-2^(i+1)]2^(2j) + 2^(2j) where the first sum term has i-1 one bits and its 2j-th bit is zero, while the second sum term switches the 2j-th bit to one, giving i one bits, as in a(n). - Ralf Stephan, Mar 08 2004

Numbers n such that binary representation contains no "01". - Benoit Cloitre, May 23 2004

Every polynomial with coefficients equal to 1 for the leading terms and 0 after that, evaluated at 2. For instance a(13) = x^4 + x^3 + x^2 at 2, a(14) = x^4 + x^3 + x^2 + x at 2. - Ben Paul Thurston, Jan 11 2008

From Gary W. Adamson, Jul 18 2008: (Start)

As a triangle by rows starting:

1;

2, 3;

4, 6, 7;

8, 12, 14, 15;

16, 24, 28, 30, 31;

...,

equals A000012 * A130123 * A000012, where A130123 = (1, 0,2; 0,0,4; 0,0,0,8;...). Row sums of this triangle = A000337 starting (1, 5, 17, 49, 129,...). (End)

First differences are A057728 = 1; 1; 1; 1; 2,1; 1; 4,2,1; 1; 8,4,2,1; 1;... i.e., decreasing powers of 2, separated by another "1". - M. F. Hasler, May 06 2009

Apart from first term, numbers that are powers of 2 or the sum of some consecutive powers of 2. - Omar E. Pol, Feb 14 2013

LINKS

T. D. Noe and R. Zumkeller, Table of n, a(n) for n = 1..10000, First 5051 terms by T. D. Noe

S. M. Shabab Hossain, Md. Mahmudur Rahman and M. Sohel Rahman, Solving a Generalized Version of the Exact Cover Problem with a Light-Based Device, Optical Supercomputing, Lecture Notes in Computer Science, 2011, Volume 6748/2011, 23-31, DOI: 10.1007/978-3-642-22494-2_4.

Eric Weisstein's World of Mathematics, Digit

Index entries for sequences related to binary expansion of n

FORMULA

a(n)=2^s(n) - 2^{[s(n)^2+s(n)-2n]/2} where s(n) = ceiling{[ -1+sqrt(1+8n)]/2}. - Sam Alexander, Jan 08 2005

a(n) = 2^k + a(n-k-1) for 1 < n and k = A003056(n-2). The rows of T(r, c) = 2^r-2^c for 0 <= c < r read from right to left produce this sequence: 1; 2, 3; 4, 6, 7; 8, 12, 14, 15; ... - Frank Ellermann, Dec 06 2001

For n>0, a(n) mod 2 == A010054(n). - Benoit Cloitre, May 23 2004

A140130(a(n))=1 and for n>1: A140129(a(n))=A002262(n-2). - Reinhard Zumkeller, May 14 2008

a(n+1)= (2^(n-r(r-1)/2)-1) 2^(r(r+1)/2-n), where r=round(sqrt(2n)). - M. F. Hasler, May 06 2009

Start with A000225. If n is in sequence, then so is 2n. - Ralf Stephan, Aug 16 2013

EXAMPLE

a(22) = 64 = 32 + 32 = 2^5 + a(16) = 2^A003056(20) + a(22-5-1).

a(23) = 96 = 64 + 32 = 2^6 + a(16) = 2^A003056(21) + a(23-6-1).

a(24) = 112 = 64 + 48 = 2^6 + a(17) = 2^A003056(22) + a(24-6-1).

MAPLE

a:=proc(n) local n2, d: n2:=convert(n, base, 2): d:={seq(n2[j]-n2[j-1], j=2..nops(n2))}: if n=0 then 0 elif n=1 then 1 elif d={0, 1} or d={0} or d={1} then n else fi end: seq(a(n), n=0..2100); # Emeric Deutsch, Apr 22 2006

MATHEMATICA

Union[Flatten[Table[2^i - 2^j, {i, 0, 100}, {j, 0, i}]]] (* T. D. Noe, Mar 15 2011 *)

PROG

(PARI) for(n=0, 2500, if(prod(k=1, length(binary(n))-1, component(binary(n), k)+1-component(binary(n), k+1))>0, print1(n, ", ")))

(PARI) A023758(n)={ my(r=round(sqrt(2*n--))); (1<<(n-r*(r-1)/2)-1)<<(r*(r+1)/2-n) }

/* or, to illustrate the "decreasing digit" property and analogy to A064222: */

A023758(n, show=0)={ my(a=0); while(n--, show & print1(a", "); a=vecsort(binary(a+1)); a*=vector(#a, j, 2^(j-1))~); a} \\ M. F. Hasler, May 06 2009

(Haskell)

import Data.Set (singleton, deleteFindMin, insert)

a023758 n = a023758_list !! (n-1)

a023758_list = 0 : f (singleton 1) where

  f s = x : f (if even x then insert z s' else insert z $ insert (z+1) s')

        where z = 2*x; (x, s') = deleteFindMin s

-- Reinhard Zumkeller, Sep 24 2014, Dec 19 2012

CROSSREFS

A000337(r) = sum of row T(r, c) with 0 <= c < r. See also A003056.

Cf. A130123, A000337.

This is the base-2 version of A064222. First differences are A057728. - M. F. Hasler, May 06 2009

Cf. A175332, A007088.

Sequence in context: A114391 A077436 A082752 * A054784 A018585 A018399

Adjacent sequences:  A023755 A023756 A023757 * A023759 A023760 A023761

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

EXTENSIONS

Definition changed by N. J. A. Sloane, Jan 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 20:17 EST 2014. Contains 252174 sequences.