This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080076 Proth primes: primes of the form k*2^m + 1 with odd k < 2^m, m >= 1. 12
 3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857, 10369, 10753, 11393, 11777, 12161, 12289, 13313 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: a(n) ~ (n log n)^2 / 2. - Thomas Ordowski, Oct 19 2014 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 C. Caldwell's The Top Twenty, Proth. James Grime and Brady Haran, 78557 and Proth Primes - Numberphile, 2017. Max Lewis and Victor Scharaschkin, k-Lehmer and k-Carmichael Numbers, Integers, 16 (2016), #A80. Eric Weisstein's World of Mathematics, Proth Prime MAPLE N:= 20000: # to get all terms <= N S:= select(isprime, {seq(seq(k*2^m+1, k = 1 .. min(2^m, (N-1)/2^m), 2), m=1..ilog2(N-1))}): sort(convert(S, list)); # Robert Israel, Feb 02 2016 MATHEMATICA r[p_, n_] := Reduce[p == (2*m + 1)*2^n + 1 && 2^n > 2*m + 1 && n > 0 && m >= 0, {a, m}, Integers]; r[p_] := Catch[ Do[ If[ r[p, n] =!= False, Throw[True]], {n, 1, Floor[Log[2, p]]}]]; A080076 = Reap[ Do[ p = Prime[k]; If[ r[p] === True, Sow[p]], {k, 1, 2000}]][[2, 1]] (* Jean-François Alcover, Apr 06 2012 *) nn = 13; Union[Flatten[Table[Select[1 + 2^n Range[1, 2^Min[n, nn - n + 1], 2], # < 2^(nn + 1) && PrimeQ[#] &], {n, nn}]]] (* T. D. Noe, Apr 06 2012 *) PROG (PARI) is_A080076(N)=isproth(N)&&isprime(N) \\ see A080075 for isproth(). - M. F. Hasler, Oct 18 2014 CROSSREFS Cf. A080075. Cf. A134876 (number of Proth primes), A214120, A239234. Cf. A248972. Sequence in context: A266234 A180008 A089996 * A128339 A147506 A282960 Adjacent sequences:  A080073 A080074 A080075 * A080077 A080078 A080079 KEYWORD nonn,changed AUTHOR Eric W. Weisstein, Jan 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.