login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081038
3rd binomial transform of (1,2,0,0,0,0,0,0,...).
23
1, 5, 21, 81, 297, 1053, 3645, 12393, 41553, 137781, 452709, 1476225, 4782969, 15411789, 49424013, 157837977, 502211745, 1592728677, 5036466357, 15884240049, 49977243081, 156905298045, 491636600541, 1537671920841
OFFSET
0,2
COMMENTS
a(n) is the number of distinguished parts in all compositions of n+1 in which some (possibly all or none) of the parts have been distinguished. a(1) = 2 because we have: 2', 1'+1, 1+1', 1'+1' where we see 5's marking the distinguished parts. With offset=1, a(n) = Sum_{k=1..n} A200139(n,k)*k. - Geoffrey Critzer, Jan 12 2013
For n>=1, a(n-1) the number of ternary strings of length 2n containing the block 11..12 with n ones where no runs of length larger than n are permitted. - Marko Riedel, Mar 08 2016
Binomial transform of {A001787(n + 1)}_{n >= 0}. - Wolfdieter Lang, Oct 01 2019
LINKS
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 13.
Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 67.
FORMULA
G.f.: (1-x)/(1-3*x)^2.
a(n) = 6*a(n-1) - 9*a(n-2), with a(0)=1, a(1)=5.
a(n) = (2*n+3)*3^(n-1).
a(n) = Sum_{k=0..n} (k+1)*2^k*binomial(n, k).
a(n) = 2*A086972(n) - 1. - Lambert Herrgesell (zero815(AT)googlemail.com), Feb 10 2008
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=0} 1/a(n) = 9*(sqrt(3)*arctanh(1/sqrt(3)) - 1).
Sum_{n>=0} (-1)^n/a(n) = 9 - 3*sqrt(3)*Pi/2. (End)
MAPLE
A081038:=n->(2*n+3)*3^(n-1): seq(A081038(n), n=0..30); # Wesley Ivan Hurt, Mar 07 2016
MATHEMATICA
LinearRecurrence[{6, -9}, {1, 5}, 40] (* Harvey P. Dale, Jun 22 2012 *)
PROG
(Magma) [(2*n+3)*3^(n-1): n in [0..30]]; // Vincenzo Librandi, Jun 09 2011
CROSSREFS
First differences of A027471.
Sequence in context: A269916 A273205 A269917 * A273389 A153008 A292878
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 03 2003
STATUS
approved