login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081037 Inverse binary transform of A027656. 1
1, -1, 3, -7, 16, -36, 80, -176, 384, -832, 1792, -3840, 8192, -17408, 36864, -77824, 163840, -344064, 720896, -1507328, 3145728, -6553600, 13631488, -28311552, 58720256, -121634816, 251658240, -520093696, 1073741824, -2214592512, 4563402752 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi and Evert Provoost, Table of n, a(n) for n = 0..1000 [Terms 0 through 300 were computed by Vincenzo Librandi; terms 301 through 1000 by Evert Provoost, Jan 25 2016]

F. Ellermann, Illustration of binomial transforms

Index entries for linear recurrences with constant coefficients, signature (-4,-4).

FORMULA

G.f.: (1+x)^3/(1+2*x)^2.

a(n) = (-1)^n*A045623(n+1)/4, n>1. - R. J. Mathar, Sep 27 2012

Recurrence: a(n) = -4a(n-1) - 4a(n-2), a(0)=1, a(1)=-1, a(2)=3, a(3)=-7. - Ralf Stephan, Jul 14 2013

MATHEMATICA

CoefficientList[Series[(1 + x)^3 / (1 + 2 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)

LinearRecurrence[{-4, -4}, {1, -1, 3, -7}, 40] (* Harvey P. Dale, Apr 14 2019 *)

PROG

(MAGMA) I:=[1, -1, 3, -7]; [n le 4 select I[n] else -4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 06 2013

(PARI) Vec((1+x)^3/(1+2*x)^2 + O(x^40)) \\ Michel Marcus, Jan 25 2016

CROSSREFS

Cf. A045891.

Sequence in context: A238441 A173514 A045891 * A019489 A077852 A218983

Adjacent sequences:  A081034 A081035 A081036 * A081038 A081039 A081040

KEYWORD

easy,sign

AUTHOR

Paul Barry, Mar 03 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 11 16:07 EST 2019. Contains 329019 sequences. (Running on oeis4.)