login
A077798
Palindromic wing primes (a.k.a. near-repdigit palindromic primes) of the general form r*(10^d - 1)/9 + (m-r)*10^floor(d/2) where d is the number of digits (an odd number > 1), r is the repeated digit, and m (different from r) is the middle digit.
50
101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999, 1111118111111
OFFSET
1,1
COMMENTS
Prime versus probable prime status and proofs are given in the author's table.
REFERENCES
C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
LINKS
Patrick De Geest, PWP Reference Table
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
PROG
(Magma) a:=[]; for d in [3..13 by 2] do for r in [1..9] do for m in [0..9] do if m ne r then t:=r*((10^d-1) div 9) + (m-r)*10^(d div 2); if IsPrime(t) then a[#a+1]:=t; end if; end if; end for; end for; end for; a; // Jon E. Schoenfield, Nov 04 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Nov 16 2002
EXTENSIONS
Offset corrected by Arkadiusz Wesolowski, Sep 13 2011
Name edited and one more term added by Jon E. Schoenfield, Nov 03 2018
STATUS
approved