OFFSET
1,2
REFERENCES
W. M. Dymacek, M. Koerlin and T. Whaley, A survey of Steinhaus graphs, Proc. 8th Quadrennial International Conf. on Graph Theory, Combinatorics, Algorithms and Application, Kalamazoo, Mich. 1996, pages 313-323, Vol. I.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. Dymacek, T. Whaley, Generating strings for bipartite Steinhaus graphs, Discrete Math. 141 (1995), pages 97-107.
Hsien-Kuei Hwang, S. Janson, T.-H. Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint 2016.
Hsien-Kuei Hwang, S. Janson, T.-H. Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.
FORMULA
a(n) <= (5n-7)/2 (n > 2) with equality for n=2^k + 1.
a(2k+1)=2a(k+1)+1; a(2k)=a(k)+a(k+1) for k >=2.
MAPLE
a := proc(n) if n=1 then 1 elif n=2 then 2 elif n=3 then 4 elif n mod 2 = 1 then 2*a((n+1)/2) + 1 else a(n/2)+a(n/2+1) fi end: seq(a(n), n=1..80);
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Feb 26 2004
STATUS
approved