login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065387 a(n) = sigma(n) + phi(n). 36
2, 4, 6, 9, 10, 14, 14, 19, 19, 22, 22, 32, 26, 30, 32, 39, 34, 45, 38, 50, 44, 46, 46, 68, 51, 54, 58, 68, 58, 80, 62, 79, 68, 70, 72, 103, 74, 78, 80, 106, 82, 108, 86, 104, 102, 94, 94, 140, 99, 113, 104, 122, 106, 138, 112, 144, 116, 118, 118, 184, 122, 126, 140 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) = 2n for n listed in A008578, the prime numbers at the beginning of the 20th century. When a(n) = a(n + 1), n is probably listed in A066198, numbers n where phi changes as fast as sigma (the only exceptions below 10000 are 2 and 854). - Alonso del Arte, Nov 16 2005

A. Makowski proved that n is prime if and only if a(n) = n * d(n), where d is A000005. - Charles R Greathouse IV, Mar 19 2012

If n is semiprime, a(n) = 2n+1+ceiling(sqrt(n))-floor(sqrt(n)). - Wesley Ivan Hurt, May 05 2015

Atanassov proves that a(n) >= n + A001414(n). - Charles R Greathouse IV, Dec 06 2016

REFERENCES

K. Atanassov, New integer functions, related to ψ and σ functions. IV., Bull. Number Theory Related Topics 12 (1988), pp. 31-35.

Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 149.

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..10000 (First 1000 terms from T. D. Noe.)

A. Makowski, Aufgaben 339, Elemente der Mathematik 15 (1960), pp. 39-40.

FORMULA

a(n) = A000203(n) + A000010(n).

a(n) = A051709(n) + 2n. - N. J. A. Sloane, Jun 12 2004

G.f.: Sum_{k>=1} (mu(k) + 1)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Sep 29 2017

EXAMPLE

a(10) = 22 because there are 4 coprimes to 10 below 10, the divisors of 10 add up to 18, and 4 + 18 = 22.

MAPLE

with(numtheory); A065387:=n->phi(n) + sigma(n); seq(A065387(n), n=1..100); # Wesley Ivan Hurt, Apr 08 2014

MATHEMATICA

Table[EulerPhi[n] + DivisorSigma[1, n], {n, 65}] (* Alonso del Arte *)

a[n_] := SeriesCoefficient[Sum[(1+MoebiusMu[k])*x^k/(1-x^k)^2, {k, 1, n}], {x, 0, n}]; Array[a, 63] (* Jean-François Alcover, Sep 29 2017, after Ilya Gutkovskiy *)

PROG

(PARI) for (n=1, 1000, write("b065387.txt", n, " ", sigma(n) + eulerphi(n)) ) \\ Harry J. Smith, Oct 17 2009

CROSSREFS

Cf. A000010, A000203, A065388, A015702, A051709, A011774.

See A292768 for partial sums, A051612 for sigma - phi.

Sequence in context: A184416 A187225 A003661 * A219787 A065388 A157936

Adjacent sequences:  A065384 A065385 A065386 * A065388 A065389 A065390

KEYWORD

nonn,easy

AUTHOR

Labos Elemer, Nov 05 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 21 21:03 EDT 2018. Contains 302877 sequences. (Running on oeis4.)