This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003662 a(n) is smallest number != a(j)+a(k), j
 1, 4, 6, 8, 11, 13, 16, 18, 23, 25, 28, 30, 35, 37, 40, 42, 47, 49, 52, 54, 59, 61, 64, 66, 71, 73, 76, 78, 83, 85, 88, 90, 95, 97, 100, 102, 107, 109, 112, 114, 119, 121, 124, 126, 131, 133, 136, 138, 143, 145, 148, 150, 155, 157, 160, 162, 167, 169, 172, 174, 179, 181, 184 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES R. K. Guy, ``s-Additive sequences,'' preprint, 1994. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Colin Barker, Table of n, a(n) for n = 1..1000 R. K. Guy, s-Additive sequences, Preprint, 1994. (Annotated scanned copy) Aayush Rajasekaran, Using Automata Theory to Solve Problems in Additive Number Theory, MS thesis, University of Waterloo, 2018. Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA Numbers congruent to {1, 4, 6, 11} mod 12 plus the number 8. a(n) = a(n-1)+a(n-4)-a(n-5) for n>7. - Colin Barker, Feb 27 2015 G.f.: x*(2*x^8+x^6-x^5+2*x^4+2*x^3+2*x^2+3*x+1) / ((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Feb 27 2015 MATHEMATICA Sort[Join[{8}, Select[Range[200], MemberQ[{1, 4, 6, 11}, Mod[#, 12]]&]]] (* Harvey P. Dale, Apr 26 2011 *) PROG (PARI) Vec(x*(2*x^8+x^6-x^5+2*x^4+2*x^3+2*x^2+3*x+1)/((x-1)^2*(x+1)*(x^2+1)) + O(x^100)) \\ Colin Barker, Feb 27 2015 CROSSREFS Cf. A060469. Cf. A003666. Sequence in context: A047290 A225002 A086377 * A132635 A182131 A298868 Adjacent sequences:  A003659 A003660 A003661 * A003663 A003664 A003665 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 06:55 EDT 2019. Contains 325192 sequences. (Running on oeis4.)