This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116520 a(0) = 0, a(1) = 1; a(n) = max { 4*a(k)+a(n-k) | 1 <= k <= n/2 }, for n>1. 22
 0, 1, 5, 9, 25, 29, 45, 61, 125, 129, 145, 161, 225, 241, 305, 369, 625, 629, 645, 661, 725, 741, 805, 869, 1125, 1141, 1205, 1269, 1525, 1589, 1845, 2101, 3125, 3129, 3145, 3161, 3225, 3241, 3305, 3369, 3625, 3641, 3705, 3769, 4025, 4089, 4345, 4601, 5625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equivalently, a(n)=r*a(ceil(n/2))+s*a(floor(n/2)), a(0)=0, a(1)=1, for (r,s) = (1,4). - N. J. A. Sloane, Feb 16 2016 A 5-divide version of A084230. Zero together with the partial sums of A102376. - Omar E. Pol, May 05 2010 Also, total number of cubic ON cells after n generations in a three-dimensional cellular automaton in which A102376(n-1) gives the number of cubic ON cells in the n-th level of the structure starting from the top. An ON cell remains ON forever. The structure looks like an irregular step pyramid, with n >= 1. - Omar E. Pol, Feb 13 2015 From Gary W. Adamson, Aug 27 2016: (Start) The formula of Mar 26 2010 is equivalent to Lim_{k=1..inf} M^k of the following production matrix M:   1, 0, 0, 0, 0, 0,...   5, 0, 0, 0, 0, 0,...   4, 1, 0, 0, 0, 0,...   0, 5, 0, 0, 0, 0,...   0, 4, 1, 0, 0, 0,...   0, 0, 5, 0, 0, 0,...   0, 0, 4, 1, 0, 0,...   0, 0, 0, 5, 0, 0,... ... The sequence with offset 1 divided by its aerated variant = (1, 5, 4, 0, 0, 0,...). (End) LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 K.-N. Chang and S.-C. Tsai, Exact solution of a minimal recurrence, Inform. Process. Lett. 75 (2000), 61-64. H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62, 19-22, 1977. D. E. Knuth, Problem 11320, The American Mathematical Monthly, Vol. 114, No. 9 (Nov., 2007), p. 835. N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant FORMULA a(0) = 1, a(1) = 1; thereafter a(2n)=5a(n) and a(2n+1)=4a(n)+a(n+1). Let r(x) = (1 + 5x + 4x^2). Then (1 + 5x + 9x^2 + 25x^3 + ...) = r(x) * r(x^2) * r(x^4) * r(x^8) * ... . - Gary W. Adamson, Mar 26 2010 a(n) = Sum_{k=0..n-1} 4^wt(k), where wt = A000120. - Mike Warburton, Mar 14 2019 MAPLE a:=proc(n) if n=0 then 0 elif n=1 then 1 elif n mod 2 = 0 then 5*a(n/2) else 4*a((n-1)/2)+a((n+1)/2) fi end: seq(a(n), n=0..52); MATHEMATICA b[0] := 0 b[1] := 1 b[n_?EvenQ] := b[n] = 5*b[n/2] b[n_?OddQ] := b[n] = 4*b[(n - 1)/2] + b[(n + 1)/2] a = Table[b[n], {n, 1, 25}] PROG (Haskell) import Data.List (transpose) a116520 n = a116520_list !! n a116520_list = 0 : zs where    zs = 1 : (concat \$ transpose                       [zipWith (+) vs zs, zipWith (+) vs \$ tail zs])       where vs = map (* 4) zs -- Reinhard Zumkeller, Apr 18 2012 CROSSREFS Cf. A000120, A006046, A077465, A130665, A130667, A102376. Sequences of form a(n)=r*a(ceil(n/2))+s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527. Sequence in context: A177240 A074741 A166701 * A273561 A273746 A234277 Adjacent sequences:  A116517 A116518 A116519 * A116521 A116522 A116523 KEYWORD nonn,look AUTHOR Roger L. Bagula, Mar 15 2006 EXTENSIONS Edited by N. J. A. Sloane, Apr 16 2006, Jul 02 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 14:06 EDT 2019. Contains 328017 sequences. (Running on oeis4.)