This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102376 a(n) = 4^A000120(n). 41
 1, 4, 4, 16, 4, 16, 16, 64, 4, 16, 16, 64, 16, 64, 64, 256, 4, 16, 16, 64, 16, 64, 64, 256, 16, 64, 64, 256, 64, 256, 256, 1024, 4, 16, 16, 64, 16, 64, 64, 256, 16, 64, 64, 256, 64, 256, 256, 1024, 16, 64, 64, 256, 64, 256, 256, 1024, 64, 256, 256, 1024, 256, 1024, 1024 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Consider a simple cellular automaton, a grid of binary cells c(i,j), where the next state of the grid is calculated by applying the following rule to each cell: c(i,j) = ( c(i+1,j-1) + c(i+1,j+1) + c(i-1,j-1) + c(i-1,j+1) ) mod 2 If we start with a single cell having the value 1 and all the others 0, then the aggregate values of the subsequent states of the grid will be the terms in this sequence. - Andras Erszegi (erszegi.andras(AT)chello.hu), Mar 31 2006. See link for initial states. - N. J. A. Sloane, Feb 12 2015 This is the odd-rule cellular automaton defined by OddRule 033 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015 First differences of A116520. - Omar E. Pol, May 05 2010 LINKS N. J. A. Sloane, Table of n, a(n) for n = 0..10000 David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package. Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015. N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2 N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015. N. J. A. Sloane, Illustration of generations 0-15 of the cellular automaton N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS FORMULA G.f.: product{k>=0, 1 + 4x^(2^k)}; a(n)=product{k=0..log_2(n), 4^b(n, k)}, b(n, k)=coefficient of 2^k in binary expansion of n; a(n)=sum{k=0..n, (C(n, k) mod 2)*3^A000120(n-k)}. (Formulas due to Paul D. Hanna.) a(n) = sum{k=0..n, mod(C(n, k), 2)*sum{j=0..k, mod(C(k, j), 2)*sum{i=0..j, mod(C(j, i), 2)}}}. - Paul Barry, Apr 01 2005 G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w * (u^2 - 2*u*v + 5*v^2) - 4*v^3. - Michael Somos, May 29 2008 Run length transform of A000302. - N. J. A. Sloane, Feb 23 2015 EXAMPLE 1 + 4*x + 4*x^2 + 16*x^3 + 4*x^4 + 16*x^5 + 16*x^6 + 64*x^7 + 4*x^8 + ... From Omar E. Pol, Jun 07 2009: (Start) Triangle begins: 1; 4; 4,16; 4,16,16,64; 4,16,16,64,16,64,64,256; 4,16,16,64,16,64,64,256,16,64,64,256,64,256,256,1024; 4,16,16,64,16,64,64,256,16,64,64,256,64,256,256,1024,16,64,64,256,64,256,... (End) MAPLE seq(4^convert(convert(n, base, 2), `+`), n=0..100); # Robert Israel, Apr 30 2017 MATHEMATICA Table[4^DigitCount[n, 2, 1], {n, 0, 100}] (* Indranil Ghosh, Apr 30 2017 *) PROG (PARI) {a(n) = if( n<0, 0, 4^subst( Pol( binary(n)), x, 1))} /* Michael Somos, May 29 2008 */ a(n) = 4^hammingweight(n); \\ Michel Marcus, Apr 30 2017 (Haskell) a102376 = (4 ^) . a000120  -- Reinhard Zumkeller, Feb 13 2015 (Python) def a(n): return 4**bin(n)[2:].count("1") # Indranil Ghosh, Apr 30 2017 CROSSREFS For generating functions Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674. A151783 is a very similar sequence. Cf. A001316, A048883, A000079, A116520, A000302. See A160239 for the analogous CA defined by Rule 204 on an 8-celled neighborhood. Sequence in context: A255300 A255298 A255302 * A217954 A273749 A273563 Adjacent sequences:  A102373 A102374 A102375 * A102377 A102378 A102379 KEYWORD easy,nonn,tabf AUTHOR Paul Barry, Jan 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 02:38 EST 2018. Contains 297938 sequences.