login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006520 Partial sums of A006519.
(Formerly M2344)
5
1, 3, 4, 8, 9, 11, 12, 20, 21, 23, 24, 28, 29, 31, 32, 48, 49, 51, 52, 56, 57, 59, 60, 68, 69, 71, 72, 76, 77, 79, 80, 112, 113, 115, 116, 120, 121, 123, 124, 132, 133, 135, 136, 140, 141, 143, 144, 160, 161, 163, 164, 168, 169, 171, 172, 180, 181, 183, 184, 188, 189 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The subsequence of primes in this partial sum begins: 3, 11, 23, 29, 31, 59, 71, 79, 113, 163, 181. The subsequence of powers in this partial sum begins: 1, 4, 8, 9, 32, 49, 121, 144, 169. [Jonathan Vos Post, Feb 18 2010]

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

R. Stephan, Some divide-and-conquer sequences ...

R. Stephan, Table of generating functions

FORMULA

a(n)/(n*log(n)) is bounded. - Benoit Cloitre, Dec 17 2002

G.f.: 1/x/(1-x) * (x/(1-x) + Sum(k>=1, 2^(k-1)*x^2^k/(1-x^2^k))). - Ralf Stephan, Apr 17 2003

a(n) = b(n+1), with b(2n) = 2b(n) + n, b(2n+1) = 2b(n) + n + 1. - Ralf Stephan, Sep 07 2003

MATHEMATICA

Table[ 2^IntegerExponent[n, 2], {n, 1, 70}] // Accumulate (* Jean-Fran├žois Alcover, May 14 2013 *)

PROG

(PARI) a(n)=sum(i=1, n, 2^valuation(i, 2))

CROSSREFS

First differences of A022560.

Sequence in context: A047460 A193532 A068056 * A054204 A050003 A285033

Adjacent sequences:  A006517 A006518 A006519 * A006521 A006522 A006523

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Simon Plouffe

EXTENSIONS

More terms from Benoit Cloitre, Dec 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 04:43 EDT 2017. Contains 288813 sequences.