|
|
A002156
|
|
Numbers k for which rank of the elliptic curve y^2 = x^3 - k*x is 0.
(Formerly M2345 N0926)
|
|
6
|
|
|
1, 3, 4, 8, 9, 11, 13, 16, 18, 19, 24, 27, 28, 29, 33, 35, 40, 43, 44, 48, 51, 59, 61, 63, 64, 67, 68, 75, 81, 83, 88, 91, 92, 93, 98, 100, 104, 107, 108, 109, 113, 115, 120, 121, 123, 125, 126, 128, 129, 131, 139, 144, 152, 153, 157, 163, 164, 168, 172, 173, 176, 177, 179, 180, 187, 189, 193, 195, 198, 200
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1730
B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves, I, J. Reine Angew. Math., 212 (1963), 7-25.
B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves, I, J. Reine Angew. Math., 212 (1963), 7-25 (open access).
|
|
PROG
|
(MAGMA) for k in[1..200] do if Rank(EllipticCurve([0, 0, 0, -k, 0])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019
(PARI) for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, -k, 0]))[1]==0, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019
|
|
CROSSREFS
|
Cf. A060952.
Sequence in context: A006520 A054204 A050003 * A285033 A073258 A170954
Adjacent sequences: A002153 A002154 A002155 * A002157 A002158 A002159
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
Corrected and extended by Vaclav Kotesovec, Jul 07 2019
New name by Vaclav Kotesovec, Jul 07 2019
|
|
STATUS
|
approved
|
|
|
|