login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105423
Number of compositions of n+2 having exactly two parts equal to 1.
8
1, 0, 3, 3, 9, 15, 31, 57, 108, 199, 366, 666, 1205, 2166, 3873, 6891, 12207, 21537, 37859, 66327, 115842, 201743, 350412, 607140, 1049545, 1810428, 3116655, 5355219, 9185349, 15728547, 26890375, 45904773, 78253896, 133221079
OFFSET
0,3
COMMENTS
Column 2 of A105422.
LINKS
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 11.
J. J. Madden, A generating function for the distribution of runs in binary words, arXiv:1707.04351 [math.CO], 2017. Theorem 1.1, r=1, k=2.
FORMULA
G.f.: (1-z)^3/(1-z-z^2)^3.
a(n) = (1/50) [(5n^2+21n+25)*Lucas(n) - (11n^2+30n+10)*Fibonacci(n) ]. - Ralf Stephan, Jun 01 2007
EXAMPLE
a(4)=9 because we have (1,1,4),(1,4,1),(4,1,1),(1,1,2,2),(1,2,1,2),(1,2,2,1),(2,1,1,2),(2,1,2,1) and (2,2,1,1).
MAPLE
G:=(1-z)^3/(1-z-z^2)^3: Gser:=series(G, z=0, 42): 1, seq(coeff(Gser, z^n), n=1..40);
MATHEMATICA
LinearRecurrence[{3, 0, -5, 0, 3, 1}, {1, 0, 3, 3, 9, 15}, 40] (* Jean-François Alcover, Jul 23 2018 *)
CROSSREFS
Cf. A105422.
Sequence in context: A264098 A223209 A233026 * A147471 A062510 A000200
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Apr 07 2005
STATUS
approved