OFFSET
0,2
COMMENTS
The number of zeros in the first n rows is binomial(n+1,2) - a(n).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 53.
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024. See p. 1.
FORMULA
a(n) = ((C(d0+1,2)*15^0*(d1+1) + C(d1+1,2)*15^1)*(d1+1) + C(d1+1,2)*15^1)*(d2+1) + C(d2+1,2)*15^2 ..., where d_k...d_1d_0 is the base 5 expansion of n+1 and 15 = binomial(5+1,2). The formula generalizes to other prime bases p.
EXAMPLE
n = 38: n+1 = 39 = 124_5, thus a(38) = (C(5,2)*15^0*3 + C(3,2)*15^1)*2 + C(2,2)*15^2 = (10*1*3 + 3*15)*2 + 1*225 = 375.
MAPLE
a:= proc(n) local l, m, h, j;
m:= n+1;
l:= [];
while m>0 do l:= [l[], irem (m, 5, 'm')+1] od;
h:= 0;
for j to nops(l) do h:= h*l[j] +binomial (l[j], 2) *15^(j-1) od:
h
end:
seq (a(n), n=0..100);
MATHEMATICA
a[n_] := Module[{l, m, r, h, j}, m = n+1; l = {}; While[m>0, l = Append[l, {m, r} = QuotientRemainder[m, 5]; r+1]]; h = 0; For[j = 1, j <= Length[l], j++, h = h*l[[j]] + Binomial [l[[j]], 2] *15^(j-1)]; h]; Table [a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 26 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Weisenhorn, Aug 24 2011
EXTENSIONS
Edited by Alois P. Heinz, Sep 06 2011
STATUS
approved