login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049020 Triangle of numbers a(n,k), 0 <= k <= n: number of set partitions of {1,2,...,n} in which exactly k of the blocks have been distinguished. 21
1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 15, 37, 31, 10, 1, 52, 151, 160, 75, 15, 1, 203, 674, 856, 520, 155, 21, 1, 877, 3263, 4802, 3556, 1400, 287, 28, 1, 4140, 17007, 28337, 24626, 11991, 3290, 490, 36, 1, 21147, 94828, 175896, 174805, 101031, 34671, 6972, 786, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Triangle a(n,k) read by rows; given by [1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is Deléham's operator defined in A084938.
Exponential Riordan array [exp(exp(x)-1), exp(x)-1]. - Paul Barry, Jan 12 2009
Equal to A048993*A007318. - Philippe Deléham, Oct 31 2011
This lower unitriangular array is the L factor in the LU decomposition of the Hankel matrix (Bell(i+j-2))_i,j >= 1, where Bell(n) = A000110(n). The U factor is A059098 (see Chamberland, p. 1672). - Peter Bala, Oct 15 2023
LINKS
M. Aigner, A characterization of the Bell numbers, Discr. Math., 205 (1999), 207-210.
Paul Barry, Constructing Exponential Riordan Arrays from Their A and Z Sequences, Journal of Integer Sequences, 17 (2014), #14.2.6.
Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, Combinatorial Identities for Vacillating Tableaux, arXiv:2308.14183 [math.CO], 2023. See p. 11.
Marc Chamberland, Factored matrices can generate combinatorial identities, Linear Algebra and its Applications, Volume 438, Issue 4, 15 Feb. 2013, pp. 1667-1677.
J. East and R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359 [math.GR], 2014.
Tom Halverson and Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018.
Aoife Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2.
Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arith., 35 (1979), 1-16.
J. Riordan, Letter, Oct 31 1977. The array is on the second page.
FORMULA
a(n,k) = a(n-1, k-1) + (k+1)*a(n-1, k) + (k+1)*a(n-1, k+1), n >= 1.
a(n,k) = Sum_{i=0..n} Stirling2(n,i)*binomial(i,k). - Vladeta Jovovic, Jan 27 2001
E.g.f. for the k-th column is (1/k!)*(exp(x)-1)^k*exp(exp(x)-1). - Vladeta Jovovic, Jan 27 2001
G.f.: 1/(1-x-xy-x^2(1+y)/(1-2x-xy-2x^2(1+y)/(1-3x-xy-3x^2(1+y)/(1-4x-xy-4x^2(1+y)/(1-... (continued fraction). - Paul Barry, Apr 29 2009
E.g.f.: exp((y+1)*(exp(x)-1)). - Geoffrey Critzer, Nov 30 2012
Note that A244489 (which is essentially the same triangle) has the formula T(n,k) = Sum_{j=k..n} binomial(n,j)*Stirling_2(j,k)*Bell(n-j), where Bell(n) = A000110(n), for n >= 1, 0 <= k <= n-1. - N. J. A. Sloane, May 17 2016
a(2n,n) = A245109(n). - Alois P. Heinz, Aug 23 2017
Empirical: a(n,k) = p(1^n)[st(1^k)] (see A002872 for notation). - Andrey Zabolotskiy, Oct 17 2017
a(n,k) = Sum_{j=0..k} (-1)^(k-j)*A046716(k, k-j)*Bell(n + j)/k!. - Peter Luschny, Dec 06 2023
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 1;
5, 10, 6, 1;
15, 37, 31, 10, 1;
...
From Paul Barry, Jan 12 2009: (Start)
Production array begins
1, 1;
1, 2, 1;
0, 2, 3, 1;
0, 0, 3, 4, 1;
0, 0, 0, 4, 5, 1;
... (End)
MAPLE
a:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, a(n-1, k-1) +(k+1)*(a(n-1, k) +a(n-1, k+1))))
end:
seq(seq(a(n, k), k=0..n), n=0..15); # Alois P. Heinz, Nov 30 2012
MATHEMATICA
a[n_, k_] = Sum[StirlingS2[n, i]*Binomial[i, k], {i, 0, n}]; Flatten[Table[a[n, k], {n, 0, 9}, {k, 0, n}]]
(* Jean-François Alcover, Aug 29 2011, after Vladeta Jovovic *)
PROG
(PARI) T(n, k)=if(k<0 || k>n, 0, n!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)), n), k))
(Sage)
def A049020_triangle(dim):
M = matrix(ZZ, dim, dim)
for n in (0..dim-1): M[n, n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n, k] = M[n-1, k-1]+(k+1)*M[n-1, k]+(k+1)*M[n-1, k+1]
return M
A049020_triangle(9) # Peter Luschny, Sep 19 2012
CROSSREFS
First column gives A000110, second column = A005493.
Third column = A003128, row sums = A001861, A059340.
See A244489 for another version of this triangle.
Sequence in context: A060693 A172381 A089302 * A299105 A307899 A144634
KEYWORD
nonn,tabl,nice,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers.
Better definition from Geoffrey Critzer, Nov 30 2012.
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 04:58 EDT 2024. Contains 370952 sequences. (Running on oeis4.)