This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215066 E.g.f.: Sum_{n>=0} Product_{k=1..n} (exp((2*k-1)*x) - 1). 5
 1, 1, 7, 127, 4315, 235831, 18911467, 2091412807, 305035062955, 56729101908151, 13102338649018027, 3679320979659518887, 1234515698986458346795, 487763952468349266962071, 224150079034073231822617387, 118541831524545132821950527367 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES A. Folsom, K. Ono and R. C. Rhoades, Ramanujan's radial limits, http://math.stanford.edu/~rhoades/FILES/ramanujans_radial.pdf, 2013. - From N. J. A. Sloane, Feb 09 2013 LINKS FORMULA Folsom et al. give a closed form for a(n). - N. J. A. Sloane, Feb 09 2013 E.g.f.: 1 + (exp(x)-1)/(W(0)-exp(x)+1), where W(k) = (exp(x))^(2*k+1) - ((exp(x))^(2*k+3)-1)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 05 2014 a(n) ~ sqrt(6) * 24^n * (n!)^2 / (sqrt(n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, May 04 2014 E.g.f.: 1/2*( 1 + Sum_{n>=0} exp((2*n+1)*x)*Product_{k=1..n} (exp((2*k-1)*x) - 1) ). Cf. A053250 and A207569. - Peter Bala, May 15 2017 EXAMPLE E.g.f.: A(x) = 1 + x + 7*x^2/2! + 127*x^3/3! + 4315*x^4/4! + 235831*x^5/5! +... where A(x) = 1 + (exp(x)-1) + (exp(x)-1)*(exp(3*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1)*(exp(9*x)-1) +... MATHEMATICA Table[((-1)^n*2*Sum[Sum[n!/(a!*(2b)!*(n-a-2b)!)*(3/2)^a*(5/2)^(2b) * EulerE[2a+2b], {a, 0, n}], {b, 0, n/2}] + 2*(-1)^n*Sum[n!/((n-2b)!*(2b)!)*(3/2)^(n-2b)*(1/2)^(2b)*EulerE[2n-2b], {b, 0, n/2}])/4, {n, 0, 20}] (* Vaclav Kotesovec, May 04 2014 after A. Folsom *) PROG (PARI) {a(n)=n!*polcoeff(sum(m=0, n+1, prod(k=1, m, exp((2*k-1)*x+x*O(x^n))-1)), n)} for(n=0, 26, print1(a(n), ", ")) CROSSREFS Cf. A214687, A158690, A053250, A207569. Sequence in context: A241955 A139291 A274673 * A092676 A002067 A274571 Adjacent sequences:  A215063 A215064 A215065 * A215067 A215068 A215069 KEYWORD nonn,easy AUTHOR Paul D. Hanna, Aug 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 19:49 EDT 2019. Contains 322446 sequences. (Running on oeis4.)