login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261736 Expansion of Product_{k>=1} (1 + x^(6*k))/(1 + x^k). 11
1, -1, 0, -1, 1, -1, 2, -2, 2, -3, 3, -3, 5, -5, 5, -7, 8, -8, 11, -12, 12, -16, 17, -18, 23, -25, 26, -32, 35, -37, 45, -49, 52, -62, 67, -72, 85, -92, 98, -114, 124, -133, 153, -166, 178, -203, 220, -236, 268, -290, 311, -350, 379, -407, 456, -493, 529 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 14.

FORMULA

a(n) ~ (-1)^n * exp(sqrt(2*n)*Pi/3) / (2^(7/4)*sqrt(3)*n^(3/4)).

MAPLE

seq(coeff(series(mul((1+x^(6*k))/(1+x^k), k=1..n), x, n+1), x, n), n=0..60); # Muniru A Asiru, Jul 29 2018

MATHEMATICA

nmax = 100; CoefficientList[Series[Product[(1 + x^(6*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Sequence in context: A062051 A179269 A108711 * A247049 A029059 A035449

Adjacent sequences:  A261733 A261734 A261735 * A261737 A261738 A261739

KEYWORD

sign

AUTHOR

Vaclav Kotesovec, Aug 30 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 01:17 EDT 2018. Contains 315360 sequences. (Running on oeis4.)