The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024785 Left-truncatable primes: every suffix is prime and no digits are zero. 35
 2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683, 743, 773, 797, 823, 853, 883, 937, 947, 953, 967, 983, 997, 1223 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Last term is a(4260) = 357686312646216567629137 (Angell and Godwin). - Eric W. Weisstein, Dec 11 1999 Can be seen as table whose rows list n-digit terms, 1 <= n <= 25. Row lengths are A050987. - M. F. Hasler, Nov 07 2018 LINKS N. J. A. Sloane, Table of n, a(n) for n = 1..4260 (The full list, based on the De Geest web site) I. O. Angell and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977. P. De Geest, The list of 4260 left-truncatable primes James Grime and Brady Haran, 357686312646216567629137, Numberphile video (2018) Rosetta Code, Programs for finding truncatable primes Eric Weisstein's World of Mathematics, Truncatable Prime Chai Wah Wu, On a conjecture regarding primality of numbers constructed from prepending and appending identical digits, arXiv:1503.08883 [math.NT], 2015. MAPLE a:=[[2], [3], [5], [7]]: l1:=1: l2:=4: for n from 1 to 3 do for k from 1 to 9 do for j from l1 to l2 do d:=[op(a[j]), k]: if(isprime(op(convert(d, base, 10, 10^nops(d)))))then a:=[op(a), d]: fi: od: od: l1:=l2+1: l2:=nops(a): if(l1>l2)then break: fi: od: seq(op(convert(a[j], base, 10, 10^nops(a[j]))), j=1..nops(a)); # Nathaniel Johnston, Jun 21 2011 MATHEMATICA max = 2000; truncate[p_] := If[id = IntegerDigits[p]; FreeQ[id, 0] && (Last[id] == 3 || Last[id] == 7) && PrimeQ[q = FromDigits[ Rest[id]]], q, p]; ok[n_] := FixedPoint[ truncate, n] < 10; p = 5; A024785 = {2, 3, 5}; While[(p = NextPrime[p]) < max, If[ok[p], AppendTo[A024785, p]]]; A024785 (* Jean-François Alcover, Nov 09 2011 *) d[n_]:=IntegerDigits[n]; ltrQ[n_]:=And@@PrimeQ[NestList[FromDigits[Drop[d[#], 1]]&, n, Length[d[n]]-1]]; Select[Range[1225], ltrQ[#]&] (* Jayanta Basu, May 29 2013 *) FullList=Sort[Flatten[Table[FixedPointList[Select[Flatten[Table[Range[9]*10^Length@IntegerDigits[#[[1]]] + #[[i]], {i, Length[#]}]], PrimeQ] &, {i}], {i, {2, 3, 5, 7}}]]] (* Fabrice Laussy, Nov 10 2019 *) PROG (PARI) v=vector(4260); v[1]=2; v[2]=3; v[3]=5; v[4]=7; i=0; j=4; until(i>=j, i++; p=v[i]; P10=10^(1+log(p)\log(10)); for(k=1, 9, z=k*P10+p; if(isprime(z), j++; v[j]=z; ))); s=vector(4260); s=vecsort(v); for(i=1, j, write("b024785.txt", i, " ", s[i]); ); \\ (PARI) is_A024785(n, t=1)={until(t>10*p, isprime(p=n%t*=10)||return); n==p} \\ M. F. Hasler, Apr 17 2014 (PARI) A024785=vector(25, n, p=vecsort(concat(apply(p->select(isprime, vector(9, i, i*10^(n-1)+p)), if(n>1, p))))); \\ Yields the list of rows (n-digit terms, n = 1..25). Use concat(%) to flatten. There are faster variants using matrices (vectorv(9, i, 1)*p+[1..9]~*10^(n-1)*vector(#p, i, 1)) and/or predefined vectors, but they are less concise and this takes less than 0.1 sec. - M. F. Hasler, Nov 07 2018 (Haskell) import Data.List (tails) a024785 n = a024785_list !! (n-1) a024785_list = filter (\x ->    all (== 1) \$ map (a010051 . read) \$ init \$ tails \$ show x) a038618_list -- Reinhard Zumkeller, Nov 01 2011 CROSSREFS Supersequence of A240768. Cf. A033664, A032437, A020994, A024770 (right-truncatable primes), A052023, A052024, A052025, A050986, A050987, A077390 (left-and-right truncatable primes), A137812 (left-or-right truncatable primes), A254753. Sequence in context: A042993 A308711 A033664 * A069866 A125772 A233282 Adjacent sequences:  A024782 A024783 A024784 * A024786 A024787 A024788 KEYWORD nonn,base,easy,fini,full,tabf AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 25 11:56 EDT 2020. Contains 338012 sequences. (Running on oeis4.)