login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208354
Number of compositions of n with at most one even part.
11
1, 1, 2, 4, 7, 13, 23, 41, 72, 126, 219, 379, 653, 1121, 1918, 3272, 5567, 9449, 16003, 27049, 45636, 76866, 129267, 217079, 364057, 609793, 1020218, 1705036, 2846647, 4748101, 7912559, 13174889, 21919488, 36440646, 60538443, 100503667, 166744997, 276476129
OFFSET
0,3
COMMENTS
Conjecture: a(n) is the number of compositions of n if all the 1's are constrained to be in a single run; for example, a(7) counts the compositions 4,1,1,1 and 1,1,1,4 but not the compositions 1,4,1,1 and 1,1,4,1. - Gregory L. Simay, Sep 29 2018
This also gives the number of ordered partitions of n into parts of sizes 1, 2, and 3 with at most one 3. - Jerrold Grossman, Apr 03 2024
LINKS
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 11.
FORMULA
G.f.: (x+1)*(x-1)^2/(x^2+x-1)^2.
a(n) = T(n+1) - T(n-1), where T(n) = ((2*n+3)*Fibonacci(n) - n*Fibonacci(n-1)) / 5 = A010049(n). - Gary Detlefs, Jan 19 2013
a(n) = (2*(A099920(n-2)+A000045(n+2)) + A099920(n-1)+A000045(n+1)) / 5. - Yuchun Ji, Mar 21 2019
EXAMPLE
a(4) = 7: {4, 13, 31, 112, 121, 211, 1111}.
a(5) = 13: {5, 14, 41, 23, 32, 113, 131, 311, 1112, 1121, 1211, 2111, 11111}.
a(6) = 23: {6, 15, 51, 33, 114, 141, 411, 123, 132, 213, 231, 312, 321, 1113, 1131, 1311, 3111, 11112, 11121, 11211, 12111, 21111, 111111}.
MAPLE
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-2|1|2>>^n.
<<1, 1, 2, 4>>)[1, 1]:
seq(a(n), n=0..40);
MATHEMATICA
LinearRecurrence[{2, 1, -2, -1}, {1, 1, 2, 4}, 40] (* Jean-François Alcover, Feb 18 2017 *)
CoefficientList[Series[((-1 + x)^2 (1 + x))/(-1 + x + x^2)^2, {x, 0, 50}], x] (* Stefano Spezia, Oct 29 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((x+1)*(x-1)^2/(x^2+x-1)^2) \\ Altug Alkan, Oct 02 2018
(GAP) T:=n->((2*n+3)*Fibonacci(n)-n*Fibonacci(n-1))/5; a:=List([0..40], n->T(n+1)-T(n-1)); # Muniru A Asiru, Oct 28 2018
(Magma) I:=[1, 1, 2, 4]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Oct 29 2018
CROSSREFS
Sequence in context: A239553 A319255 A136299 * A003116 A368299 A303666
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Feb 25 2012
STATUS
approved