login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056156 Number of connected bipartite graphs with n edges, no isolated vertices and a distinguished bipartite block, up to isomorphism. 43
1, 2, 3, 7, 12, 32, 67, 181, 458, 1295, 3642, 10975, 33448, 106424, 345964, 1159489, 3975367, 13977808, 50238606, 184629655, 692757132, 2652892219, 10359676617, 41233344350, 167171988557, 690054189750, 2898637406813, 12385234548345 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

EULERi transform of A049311.

Also the number of non-isomorphic connected set multipartitions (multisets of sets) of weight n. The weight of a set multipartition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. - Gus Wiseman, Sep 23 2018

LINKS

Table of n, a(n) for n=1..28.

N. J. A. Sloane, Transforms

EXAMPLE

From Gus Wiseman, Sep 24 2018: (Start)

Non-isomorphic representatives of the a(1) = 1 through a(4) = 7 connected set multipartitions:

  {{1}}   {{1,2}}     {{1,2,3}}      {{1,2,3,4}}

         {{1},{1}}   {{2},{1,2}}    {{3},{1,2,3}}

                    {{1},{1},{1}}   {{1,2},{1,2}}

                                    {{1,3},{2,3}}

                                   {{1},{2},{1,2}}

                                   {{2},{2},{1,2}}

                                  {{1},{1},{1},{1}}

(End)

CROSSREFS

Cf. A007716, A007718, A056156, A319557, A319565, A319566.

Sequence in context: A305752 A034786 A080107 * A112837 A056355 A056356

Adjacent sequences:  A056153 A056154 A056155 * A056157 A056158 A056159

KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Jul 30 2000

EXTENSIONS

More terms from Max Alekseyev, Jul 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 05:58 EST 2019. Contains 320411 sequences. (Running on oeis4.)