

A073009


Decimal expansion of Sum_{n = 1 .. infinity} 1/n^n.


22



1, 2, 9, 1, 2, 8, 5, 9, 9, 7, 0, 6, 2, 6, 6, 3, 5, 4, 0, 4, 0, 7, 2, 8, 2, 5, 9, 0, 5, 9, 5, 6, 0, 0, 5, 4, 1, 4, 9, 8, 6, 1, 9, 3, 6, 8, 2, 7, 4, 5, 2, 2, 3, 1, 7, 3, 1, 0, 0, 0, 2, 4, 4, 5, 1, 3, 6, 9, 4, 4, 5, 3, 8, 7, 6, 5, 2, 3, 4, 4, 5, 5, 5, 5, 8, 8, 1, 7, 0, 4, 1, 1, 2, 9, 4, 2, 9, 7, 0, 8, 9, 8, 4, 9, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This is also equal to Integral_{x = 0 .. 1 } 1/x^x.
10*Sum_{n = 1 .. infinity} 1/p(n)^p(n+1), where p(n) and p(n+1) are consecutive primes, is equal to Sum_{n = 1 .. infinity} 1/n^n up to the fifth decimal digit. [Paolo P. Lava, May 21 2013]


LINKS

Table of n, a(n) for n=1..105.
Randall Munroe, Approximations
Simon Plouffe, Sum(1/n^n,n=1..infinity)
Eric Weisstein's World of Mathematics, Power Tower
Eric Weisstein's World of Mathematics, Sophomore's Dream


FORMULA

Constant also equals the double integral int {y = 0..1} int {x = 0..1} 1/(x*y)^(x*y) dx dy.  Peter Bala, Mar 04 2012
Approximately log(3)^e, see Munroe link.  Charles R Greathouse IV, Apr 25 2012


EXAMPLE

1.291285997062663540407282590595600541498619368...


MATHEMATICA

RealDigits[N[Sum[1/n^n, {n, 1, Infinity}], 110]] [[1]]


PROG

(PARI) suminf(n=1, n^n) \\ Charles R Greathouse IV, Apr 25 2012


CROSSREFS

Cf. A083648, A229191, A245637.
Sequence in context: A094242 A199381 A083649 * A011064 A086773 A176124
Adjacent sequences: A073006 A073007 A073008 * A073010 A073011 A073012


KEYWORD

cons,nonn


AUTHOR

Robert G. Wilson v, Aug 03 2002


STATUS

approved



