login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013610 Triangle of coefficients in expansion of (1+3*x)^n. 19
1, 1, 3, 1, 6, 9, 1, 9, 27, 27, 1, 12, 54, 108, 81, 1, 15, 90, 270, 405, 243, 1, 18, 135, 540, 1215, 1458, 729, 1, 21, 189, 945, 2835, 5103, 5103, 2187, 1, 24, 252, 1512, 5670, 13608, 20412, 17496, 6561, 1, 27, 324, 2268, 10206, 30618, 61236, 78732, 59049, 19683 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

T(n,k) is the number of lattice paths from (0,0) to (n,k) with steps (1,0) and three kinds of steps (1,1). The number of paths with steps (1,0) and s kinds of steps (1,1) corresponds to the expansion of (1+s*x)^n. - Joerg Arndt, Jul 01 2011

Rows of A027465 reversed. - Michael Somos, Feb 14 2002

T(n,k) equals the number of n-length words on {0,1,2,3} having n-k zeros. - Milan Janjic, Jul 24 2015

LINKS

Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened

J. Goldman, J. Haglund, Generalized rook polynomials, J. Combin. Theory A91 (2000), 509-530, 1-rook coefficients on the 3xn board (all heights 3) with k rooks

FORMULA

G.f.: 1 / (1 - x*(1+3*y)).

Row sums are 4^n. - Joerg Arndt, Jul 01 2011

T(n,k) = 3^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*2^(n-i). - Mircea Merca, Apr 28 2012

From Peter Bala, Dec 22 2014: (Start)

Riordan array ( 1/(1 - x), 3*x/(1 - x) ).

exp(3*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(3*x)*(1 + 9*x + 27*x^2/2! + 27*x^3/3!) = 1 + 12*x + 90*x^2/2! + 540*x^3/3! + 2835*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), 3*x/(1 - x) ). (End)

T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(n,k) * binomial(k,j) * 4^j. - Kolosov Petro, Jan 28 2019

EXAMPLE

Triangle begins

  1;

  1,    3;

  1,    6,    9;

  1,    9,   27,   27;

  1,   12,   54,  108,   81;

  1,   15,   90,  270,  405,  243;

  1,   18,  135,  540, 1215, 1458,  729;

  1,   21,  189,  945, 2835, 5103, 5103, 2187;

MAPLE

T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+3*x)^n):

seq(T(n), n=0..10);  # Alois P. Heinz, Jul 25 2015

MATHEMATICA

t[n_, k_] := Binomial[n, k]*3^(n-k); Table[t[n, n-k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Mar 05 2013 *)

BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 4], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)

PROG

(PARI) {T(n, k) = polcoeff((1 + 3*x)^n, k)}; /* Michael Somos, Feb 14 2002 */

(PARI) /* same as in A092566 but use */

steps=[[1, 0], [1, 1], [1, 1], [1, 1]]; /* note triple [1, 1] */

/* Joerg Arndt, Jul 01 2011 */

(Haskell)

a013610 n k = a013610_tabl !! n !! k

a013610_row n = a013610_tabl !! n

a013610_tabl = iterate (\row ->

   zipWith (+) (map (* 1) (row ++ [0])) (map (* 3) ([0] ++ row))) [1]

-- Reinhard Zumkeller, May 26 2013

CROSSREFS

Cf. A007318, A013609, A027465, etc.

Sequence in context: A074475 A144877 A049410 * A008573 A089710 A065918

Adjacent sequences:  A013607 A013608 A013609 * A013611 A013612 A013613

KEYWORD

tabl,nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 17:20 EDT 2019. Contains 325198 sequences. (Running on oeis4.)