login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087733 Partial sums of A068639. 1
0, 1, 1, 2, 4, 7, 9, 12, 14, 17, 19, 22, 26, 31, 35, 40, 46, 53, 59, 66, 74, 83, 91, 100, 108, 117, 125, 134, 144, 155, 165, 176, 186, 197, 207, 218, 230, 243, 255, 268, 280, 293, 305, 318, 332, 347, 361, 376, 392, 409, 425, 442, 460, 479, 497, 516, 534, 553, 571 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.

Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585

LINKS

Table of n, a(n) for n=0..58.

J.-P. Allouche, J. Shallit, The Ring of k-regular Sequences, II

FORMULA

a(0)=0, a(2n+1) = -a(n)-a(n+1)+n^2+n, a(2n+1) = -2a_n+n^2+2n+1. - Ralf Stephan, Oct 16 2003

CROSSREFS

Sequence in context: A047211 A225000 A189677 * A065027 A165994 A163293

Adjacent sequences:  A087730 A087731 A087732 * A087734 A087735 A087736

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Oct 01 2003

EXTENSIONS

More terms from Benoit Cloitre, Oct 04 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 23:56 EST 2018. Contains 299595 sequences. (Running on oeis4.)