login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053445 Second differences of partition numbers A000041. 28
1, 0, 1, 0, 2, 0, 3, 1, 4, 2, 7, 3, 10, 7, 14, 11, 22, 17, 32, 28, 45, 43, 67, 63, 95, 96, 134, 139, 192, 199, 269, 287, 373, 406, 521, 566, 718, 792, 983, 1092, 1346, 1496, 1827, 2045, 2465, 2772, 3323, 3733, 4449, 5016, 5929, 6696, 7882, 8897, 10426 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

First differences of 0 1 1 2 2 4 4 7 8 12 14 21 24 34 41 55... (A002865).

For n>2, a(n-2) is the number of partitions of n with all parts > 1 and with the largest part occurring more than once. The list of partitions counted begins 22 (so a(2) = 1); 33, 222 (so a(4) = 2); 44, 332, 2222 (so a(6) = 3); 333; 55, 442, 3322, 22222; 443, 3332; 66, 552, 444, 4422, 3333, 33222, 222222; 553, 4432, 33322; ...

a(n) is the number of certain level-n quasi-primary states of a quotient space of certain Verma modules. See the Furlan et al. reference p. 67. - Wolfdieter Lang, Apr 25 2003

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, 3.

LINKS

Andrew van den Hoeven, Table of n, a(n) for n = 0..9998 (terms up to a(1000) from T. D. Noe)

Gert Almkvist, On the differences of the partition function, Acta Arith., 61.2 (1992), 173-181.

P. Furlan, G. M. Sotkov and I. T. Todorov, Two-Dimensional Conformal Quantum Field Theory, Rivista d. Nuovo Cimento 12, 6 (1989) 1-202.

FORMULA

a(n) ~ exp(sqrt(2*n/3)*Pi)*Pi^2/(24*sqrt(3)*n^2) * (1 + (23*Pi/(24*sqrt(6)) - 3*sqrt(6)/Pi)/sqrt(n) + (625*Pi^2/6912 + 45/(2*Pi^2) - 115/24)/n). - Vaclav Kotesovec, Nov 04 2016

G.f.: 1/x - 1/x^2 + ((1 - x)/x^2)*Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Feb 28 2017

EXAMPLE

a(8) = 7 - 4 = 3; the corresponding partitions are 44, 332 and 2222.

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

       b(n, i-1)+`if`(i>n, 0, b(n-i, i))))

    end:

a:= n-> b(n$2) -2*b(n+1$2) +b(n+2$2):

seq(a(n), n=0..80);  # Alois P. Heinz, May 19 2014

P:= [seq(combinat:-numbpart(n), n=0..1002)]:

seq(P[i]-2*P[i+1]+P[i+2], i=1..1001); # Robert Israel, Dec 15 2014

MATHEMATICA

Table[(PartitionsP[n+2]-PartitionsP[n+1])-(PartitionsP[n+1]-PartitionsP[n]), {n, 0, 42}] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)

Differences[Table[ PartitionsP[n], {n, 0, 56}], 2] (* Jean-Fran├žois Alcover, Sep 07 2011 *)

Differences[PartitionsP[Range[0, 60]], 2] (* Harvey P. Dale, Jan 29 2016 *)

PROG

(MAGMA) m:=58; S:=[ NumberOfPartitions(n): n in [0..m] ]; [ S[n+2]-2*S[n+1]+S[n]: n in [1..m-2] ]; // Klaus Brockhaus, Jun 09 2009

(PARI) lista(nn) = {v = vector(nn, n, numbpart(n-1)); dv = vector(#v-1, n, v[n+1] - v[n]); vector(#dv-1, n, dv[n+1] - dv[n]); } \\ Michel Marcus, Dec 15 2014

CROSSREFS

Cf. A000041, A002865, A072380, A081094, A081095.

Sequence in context: A263352 A008734 A226649 * A175990 A162517 A180876

Adjacent sequences:  A053442 A053443 A053444 * A053446 A053447 A053448

KEYWORD

easy,nice,nonn

AUTHOR

Alford Arnold, Jan 12 2000

EXTENSIONS

More terms from James A. Sellers, Feb 02 2000

Start of sequence changed, Apr 25 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 25 20:26 EDT 2017. Contains 288730 sequences.