

A053448


Multiplicative order of 5 mod m, where gcd(m, 5) = 1.


0



1, 1, 2, 1, 2, 6, 2, 6, 5, 2, 4, 6, 4, 16, 6, 9, 6, 5, 22, 2, 4, 18, 6, 14, 3, 8, 10, 16, 6, 36, 9, 4, 20, 6, 42, 5, 22, 46, 4, 42, 16, 4, 52, 18, 6, 18, 14, 29, 30, 3, 6, 16, 10, 22, 16, 22, 5, 6, 72, 36, 9, 30, 4, 39, 54, 20, 82, 6, 42, 14, 10, 44, 12, 22, 6, 46, 8, 96, 42, 30, 25, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Essentially the same as A050977.  R. J. Mathar, Oct 21 2012


LINKS

Table of n, a(n) for n=1..82.


FORMULA

a(n) = multiplicative order of 5 modulo floor((5*n1)/4), for n >= 1. This modulus is A047201(n).  Wolfdieter Lang, Sep 30 2020


MATHEMATICA

MultiplicativeOrder[5, #] & /@ Select[ Range@ 100, GCD[5, #] == 1 &] (* Robert G. Wilson v, Apr 05 2011 *)


PROG

(PARI) lista(nn) = {for(n=1, nn, if (gcd(n, 5) == 1, print1(znorder(Mod(5, n)), ", ")); ); } \\ Michel Marcus, Feb 09 2015


CROSSREFS

Cf. A047201, A002326 (order of 2), A053446 (order of 3), A053447 (order of 4).
Sequence in context: A328001 A098361 A050977 * A060550 A099206 A269223
Adjacent sequences: A053445 A053446 A053447 * A053449 A053450 A053451


KEYWORD

nonn


AUTHOR

David W. Wilson


STATUS

approved



