
REFERENCES

H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, B15.
M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 9291, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
Duijvestijn, A. J. W.; Federico, P. J.; The number of polyhedral (3connected planar) graphs. Math. Comp. 37 (1981), no. 156, 523532.
Federico, P. J., Enumeration of polyhedra: The number of 9hedra. J. Combinatorial Theory 7 1969 155161. MR0243424 (39 #4746)
Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001. See p. 155.
Fukuda, Komei; Miyata, Hiroyuki; Moriyama, Sonoko. Complete Enumeration of Small Realizable Oriented Matroids. Discrete Comput. Geom. 49 (2013), no. 2, 359381. MR3017917.  From N. J. A. Sloane, Feb 16 2013
B. Gr\"{u}nbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.
A. B. Korchagin, Ordering cellular spaces ..., Discrete Comput. Geom., 40 (2008), 289311.
Y. Y. Prokhorov, ed., Mnogogrannik [Polyhedron], Mathematical Encyclopedia Dictionary, Soviet Encyclopedia, 1988.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
G. M. Ziegler, Questions about polytopes, pp. 11951211 of Mathematics Unlimited  2001 and Beyond, ed. B. Engquist and W. Schmid, SpringerVerlag, 2001.
