login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169797
Expansion of ((1-x)/(1-2x))^10.
9
1, 10, 65, 340, 1550, 6412, 24650, 89440, 309605, 1030490, 3317445, 10377180, 31655820, 94451520, 276313200, 794169792, 2246410560, 6262748160, 17230138880, 46831339520, 125870737408, 334826700800, 882159984640, 2303540756480, 5965195018240, 15327324667904
OFFSET
0,2
COMMENTS
a(n) is the number of weak compositions of n with exactly 9 parts equal to 0. - Milan Janjic, Jun 27 2010
LINKS
Nickolas Hein, Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Index entries for linear recurrences with constant coefficients, signature (20,-180,960,-3360,8064,-13440,15360,-11520,5120,-1024)
FORMULA
a(n) = 2^(n-17)*(n+11) *(n^8 + 124*n^7 + 5986*n^6 + 143944*n^5 + 1836529*n^4 + 12358156*n^3 + 42005484*n^2 + 64730736*n + 33747840)/2835, n > 0. - R. J. Mathar, Mar 14 2011
MATHEMATICA
CoefficientList[Series[((1-x)/(1-2x))^10, {x, 0, 30}], x] (* or *) Join[ {1}, LinearRecurrence[{20, -180, 960, -3360, 8064, -13440, 15360, -11520, 5120, -1024}, {10, 65, 340, 1550, 6412, 24650, 89440, 309605, 1030490, 3317445}, 30]] (* Harvey P. Dale, Aug 21 2014 *)
PROG
(PARI) Vec(((1-x)/(1-2*x))^10+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
CROSSREFS
((1-x)/(1-2x))^k: A011782, A045623, A058396, A062109, A169792-A169797; a row of A160232.
Sequence in context: A133715 A160458 A023009 * A073381 A092441 A022638
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 15 2010
STATUS
approved