The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085548 Decimal expansion of the prime zeta function at 2: Sum_{p prime} 1/p^2. 65
 4, 5, 2, 2, 4, 7, 4, 2, 0, 0, 4, 1, 0, 6, 5, 4, 9, 8, 5, 0, 6, 5, 4, 3, 3, 6, 4, 8, 3, 2, 2, 4, 7, 9, 3, 4, 1, 7, 3, 2, 3, 1, 3, 4, 3, 2, 3, 9, 8, 9, 2, 4, 2, 1, 7, 3, 6, 4, 1, 8, 9, 3, 0, 3, 5, 1, 1, 6, 5, 0, 2, 7, 3, 6, 3, 9, 1, 0, 8, 7, 4, 4, 4, 8, 9, 5, 7, 5, 4, 4, 3, 5, 4, 9, 0, 6, 8, 5, 8, 2, 2, 2, 8, 0, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017 REFERENCES Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209. S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 94-98. J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891. LINKS Jason Kimberley, Table of n, a(n) for n = 0..1093 Henri Cohen, High Precision Computation of Hardy-Littlewood Constants, Preprint, 1998. Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission] Persi Diaconis, Frederick Mosteller, and Hironari Onishi, Second-order terms for the variances and covariances of the number of prime factors-including the square free case, J. Number Theory 9 (1977), no. 2, 187--202. MR0434991 (55 #7953). Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 171 and 190. X. Gourdon and P. Sebah, Some Constants from Number theory S. Laishram and F. Luca, Rectangles Of Nonvisible Lattice Points, J. Int. Seq. 18 (2015) 15.10.8, Theorem 1. Jon Lee, Joseph Paat, Ingo Stallknecht, and Luze Xu, Polynomial upper bounds on the number of differing columns of Delta-modular integer programs, arXiv:2105.08160 [math.OC], 2021, see page 23. R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], 2008-2009. Table 1. Gerhard Niklasch and Pieter Moree, Some number-theoretical constants [Cached copy] Hanson Smith, Ramification in the Division Fields of Elliptic Curves and an Application to Sporadic Points on Modular Curves, arXiv:1810.04809 [math.NT], 2018. Hanson Smith, Ramification in Division Fields and Sporadic Points on Modular Curves, U. Conn. (2020). Eric Weisstein's World of Mathematics, Prime Sums Eric Weisstein's World of Mathematics, Prime Zeta Function Eric Weisstein's World of Mathematics, Distinct Prime Factors Wikipedia, Prime Zeta Function FORMULA P(2) = Sum_{p prime} 1/p^2 = Sum_{n>=1} mobius(n)*log(zeta(2*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003 Equals A085991 + A086032 + 1/4. - R. J. Mathar, Jul 22 2010 Equals Sum_{k>=1} 1/A001248(k). - Amiram Eldar, Jul 27 2020 EXAMPLE 0.4522474200410654985065... = 1/2^2 + 1/3^2 + 1/5^2 +1/7^2 + 1/11^2 + 1/13^2 + ... MAPLE A085548:= proc(i) print(evalf(add(1/ithprime(k)^2, k=1..i), 100)); end: A085548(100000); # Paolo P. Lava, May 29 2012 MATHEMATICA RealDigits[PrimeZetaP[2], 10, 105][[1]] (* Jean-François Alcover, Jun 24 2011, updated May 06 2021 *) PROG (PARI) recip2(n) = { v=0; p=1; forprime(y=2, n, v=v+1./y^2; ); print(v) } (PARI) eps()=my(p=default(realprecision)); precision(2.>>(32*ceil(p*38539962/371253907)), 9) lm=lambertw(log(4)/eps())\log(4); sum(k=1, lm, moebius(k)/k*log(abs(zeta(2*k)))) \\ Charles R Greathouse IV, Jul 19 2013 (PARI) sumeulerrat(1/p, 2) \\ Hugo Pfoertner, Feb 03 2020 (Magma) R := RealField(106); PrimeZeta := func; Reverse(IntegerToSequence(Floor(PrimeZeta(2, 173)*10^105))); // Jason Kimberley, Dec 30 2016 CROSSREFS Decimal expansion of the prime zeta function: this sequence (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9). Cf. A136271 (derivative), A117543 (semiprimes), A222056, A209329, A124012. Cf. A001248, A013661, A078437, A242301. Sequence in context: A016715 A337192 A255701 * A329957 A074459 A155793 Adjacent sequences: A085545 A085546 A085547 * A085549 A085550 A085551 KEYWORD easy,nonn,cons AUTHOR Cino Hilliard, Jul 03 2003 EXTENSIONS More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003 Offset corrected by R. J. Mathar, Feb 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 01:51 EST 2022. Contains 358649 sequences. (Running on oeis4.)