login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132460 Irregular triangle read by rows of the initial floor(n/2) + 1 coefficients of 1/C(x)^n, where C(x) is the g.f. of the Catalan sequence (A000108). 9
1, 1, 1, -2, 1, -3, 1, -4, 2, 1, -5, 5, 1, -6, 9, -2, 1, -7, 14, -7, 1, -8, 20, -16, 2, 1, -9, 27, -30, 9, 1, -10, 35, -50, 25, -2, 1, -11, 44, -77, 55, -11, 1, -12, 54, -112, 105, -36, 2, 1, -13, 65, -156, 182, -91, 13, 1, -14, 77, -210, 294, -196, 49, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The length of row n is A008619(n).

Essentially equals a signed version of A034807, the triangle of Lucas polynomials. The initial n coefficients of 1/C(x)^n consist of row n followed by floor((n-1)/2) zeros for n > 0.

For the following formula for 1/C(x)^n see the W. Lang reference, proposition 1 on p. 411:

1/C(x)^n = (sqrt(x))^n*(S(n,1/sqrt(x)) - sqrt(x)*S(n-1,1/sqrt(x))*C(x)), n >= 0, with the Chebyshev polynomials S(n,x) with coefficients given in A049310. See also the coefficient array A115139 for P(n,x) = (sqrt(x)^(n-1))*S(n-1, 1/sqrt(x))). - Wolfdieter Lang, Sep 14 2013

This triangular array is composed of interleaved rows of reversed, A127677 (cf. A156308, A217476, A263916) and reversed, signed A111125. - Tom Copeland, Nov 07 2015

It seems that the n-th row lists the coefficients of the HOMFLYPT (HOMFLY) polynomial reduced to one variable for link family n, see Jablan's slide 38. - Andrey Zabolotskiy, Jan 16 2018

For n >= 1 row n gives the coefficients of the Girard-Waring formula for the sum of x1^n + x2^n in terms of the elementary symmetric functions e_1(x1,x2) = x1 + x2 and e_2(x1,x2) = x1*x2. This is an array using the partitions of n, in the reverse Abramowitz-Stegun order, with all partitions with parts larger than 2 eliminated. E.g., n = 4: x1^4 + x2^4 = 1*e1^4 - 4*e1^3*e2 + 2*e1*e2^2. See also A115131, row n = 4, with the mentioned partitions omitted. - Wolfdieter Lang, May 03 2019

LINKS

Table of n, a(n) for n=0..63.

T. Copeland, Addendum to Elliptic Lie Triad

G. Dattoli, E. Di Palma, E. Sabia, Cardan Polynomials, Chebyshev Exponents, Ultra-Radicals and Generalized Imaginary Units, Advances in Applied Clifford Algebras, 2014.

Pentti Haukkanen, Jorma Merikoski, Seppo Mustonen, Some polynomials associated with regular polygons, Acta Univ. Sapientiae, Mathematica, 6, 2 (2014) 178-193.

S. Jablan, Knots, computers, conjectures

Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq. (23) with n -> -n and eq. (20).

FORMULA

T(n,k) = (-1)^k*( C(n-k,k) + C(n-k-1,k-1) ) for n >= 0, 0 <= k <= floor(n/2).

T(0,0) = 1; T(n,k) = (-1)^k*n*binomial(n-k,k)/(n-k), k = 0..floor(n/2). - Wolfdieter Lang, May 03 2019

EXAMPLE

The irregular triangle T(n,k) begins:

n\k 0    1    2    3    4    5    6   7 ...

-------------------------------------------------

0:  1

1:  1

2:  1   -2

3:  1   -3

4:  1   -4    2

5:  1   -5    5

6:  1   -6    9   -2

7:  1   -7   14   -7

8:  1   -8   20  -16    2

9:  1   -9   27  -30    9

10: 1  -10   35  -50   25   -2

11: 1  -11   44  -77   55  -11

12: 1  -12   54 -112  105  -36    2

13: 1  -13   65 -156  182  -91   13

14: 1  -14   77 -210  294 -196   49  -2

... (reformatted - Wolfdieter Lang, May 03 2019)

MATHEMATICA

T[0, 0] = 1; T[n_, k_] := (-1)^k (Binomial[n-k, k] + Binomial[n-k-1, k-1]);

Table[T[n, k], {n, 0, 14}, {k, 0, n/2}] // Flatten (* Jean-Fran├žois Alcover, Jun 04 2018 *)

PROG

(PARI) {T(n, k)=if(k>n\2, 0, (-1)^k*(binomial(n-k, k)+binomial(n-k-1, k-1)))}

CROSSREFS

Cf. A000108, A008619, A034807 (Lucas polynomials), A111125, A115131 (Waring numbers), A127677, A132461 (row squared sums), A156308, A217476, A263916.

Sequence in context: A120385 A216477 A195836 * A238800 A067734 A303758

Adjacent sequences:  A132457 A132458 A132459 * A132461 A132462 A132463

KEYWORD

sign,easy,tabf

AUTHOR

Paul D. Hanna, Aug 21 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 22:25 EDT 2019. Contains 328038 sequences. (Running on oeis4.)