login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181418
a(n) = A000984(n)*A000172(n), which is the term-wise product of the Central binomial coefficients and Franel numbers, respectively.
4
1, 4, 60, 1120, 24220, 567504, 14030016, 360222720, 9513014940, 256758913840, 7051260776560, 196403499277440, 5535202897806400, 157551884911456000, 4522682234563776000, 130783762623673221120, 3806221127760278029980
OFFSET
0,2
COMMENTS
This sequence is s_6 in Cooper's paper. - Jason Kimberley, Nov 25 2012
Diagonal of the rational function R(x,y,z,w)=1/(1-(w*x*y+w*z+x*y+x*z+y+z)). - Gheorghe Coserea, Jul 13 2016
LINKS
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
FORMULA
a(n) = C(2n,n) * Sum_{k=0..n} C(n,k)^3.
E.g.f.: Sum_{n>=0} a(n)*x^n/(n!*(2*n)!) = ( Sum_{n>=0} x^n/n!^3 )^2.
From Jason Kimberley, Nov 26 2012: (Start)
1/Pi
= (2/25)*Sum_{n>=0} a(n)*(9n+2)/50^n. [Cooper, equation (5)]
= (2/25)*Sum_{n>=0} a(n)*A017185(n)/A165800(n). (End)
G.f.: 4*hypergeom([1/6, 1/3],[1],(27/2)*(1+(1-32*x)^(1/2))*(1-(1-32*x)^(1/2))^2/(3+(1-32*x)^(1/2))^3)^2/(3+(1-32*x)^(1/2)). - Mark van Hoeij, May 07 2013
Recurrence: n^3*a(n) = 2*(2*n-1)*(7*n^2 - 7*n + 2)*a(n-1) + 32*(n-1)*(2*n-3)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 2^(5*n+1) / (sqrt(3) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Mar 06 2014
0 = (-x^2+28*x^3+128*x^4)*y''' + (-3*x+126*x^2+768*x^3)*y'' + (-1+92*x+864*x^2)*y' + (4+96*x)*y, where y is g.f. - Gheorghe Coserea, Jul 13 2016
EXAMPLE
E.g.f.: A(x) = 1 + 4*x/2! + 60*x^2/(2!*4!) + 1120*x^3/(3!*6!) + 24220*x^4/(4!*8!) + 567504*x^5/(5!*10!) +....
where A(x)^(1/2) = 1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 +x^5/5!^3 +...
MATHEMATICA
Table[Binomial[2n, n]*Sum[Binomial[n, k]^3, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 06 2014 *)
PROG
(PARI) {a(n)=binomial(2*n, n)*sum(k=0, n, binomial(n, k)^3)}
(PARI) {a(n)=(2*n)!*n!*polcoeff(sum(m=0, n, x^m/m!^3+x*O(x^n))^2, n)}
CROSSREFS
Related to diagonal of rational functions: A268545-A268555.
Sequence in context: A123480 A227528 A156090 * A208890 A370498 A325154
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Jan 28 2011
STATUS
approved