login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007504 Sum of first n primes.
(Formerly M1370)
356
0, 2, 5, 10, 17, 28, 41, 58, 77, 100, 129, 160, 197, 238, 281, 328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(A051838(n)) = A002110(A051838(n)) / A116536(n). - Reinhard Zumkeller, Oct 03 2011

It appears that a(n)^2 - a(n-1)^2 = A034960(n). - Gary Detlefs, Dec 20 2011

This is true. Proof: By definition we have A034960(n) = sum_{k=(a(n-1)+1)..a(n)} (2*k-1). Since Sum_{k=1..n} (2*k-1) = n^2, it follows A034960(n) = a(n)^2 - a(n-1)^2, for n > 1. - Hieronymus Fischer, Sep 27 2012 [formulas above adjusted to changed offset of A034960 - Hieronymus Fischer, Oct 14 2012]

Row sums of the triangle in A037126. - Reinhard Zumkeller, Oct 01 2012

Ramanujan noticed the apparent identity between the prime parts partition numbers A000607 and the expansion of Sum_{k>=0}x^a(k)/((1-x)...(1-x^k)), cf. A046676. See A192541 for the difference between the two. - M. F. Hasler, Mar 05 2014

For n > 0: row 1 in A254858. - Reinhard Zumkeller, Feb 08 2015

REFERENCES

E. Bach and J. Shallit, ยง2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.

H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..100000

Christian Axler, New bounds for the sum of the first n prime numbers, arXiv:1606.06874 [math.NT], 2016.

R. J. Mathar, Table of 100000n, a(100000n) for n = 1..10000

V. Shevelev, Asymptotics of sum of the first n primes with a remainder term

Nilotpal Kanti Sinha, On the asymptotic expansion of the sum of the first n primes, arXiv:1011.1667 [math.NT], 2010-2015.

Eric Weisstein's World of Mathematics, Prime Sums

OEIS Wiki, Sums of powers of primes divisibility sequences

FORMULA

a(n) has the asymptotic expression a(n) ~ n^2 * log(n) / 2. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 24 2001 (see Bach & Shallit 1996)

a(n) = A014284(n+1) - 1. - Jaroslav Krizek, Aug 19 2009

a(n+1) - a(n) = A000040(n+1). - Jaroslav Krizek, Aug 19 2009

a(n) = min(A068873(n), A073619(n)) for n > 1. - Jonathan Sondow, Jul 10 2012

a(n) = A033286(n) - A152535(n). - Omar E. Pol, Aug 09 2012

For n>=3, a(n) >= (n-1)^2 * (log(n-1) - 1/2)/2 and a(n) <= n*(n+1)*(log(n) + log(log(n))+ 1)/2. Thus a(n) = n^2 * log(n) / 2 + O(n^2*log(log(n))). It is more precise than in Fares's comment. - Vladimir Shevelev, Aug 01 2013

a(n) = n^2/2 (log n + log log n - 3/2 + (log log n - 3)/log n + (2 (log log n)^2 - 14 log log n + 27)/(4 log^2 n) + O((log log n/log n)^3)) [Sinha]. - Charles R Greathouse IV, Jun 11 2015

G.f: (x*b(x))/(1-x), where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 10 2016

MAPLE

s1:=[2]; for n from 2 to 1000 do s1:=[op(s1), s1[n-1]+ithprime(n)]; od: s1;

A007504 := proc(n)

    add(ithprime(i), i=1..n) ;

end proc: # R. J. Mathar, Sep 20 2015

MATHEMATICA

Accumulate[Prime[Range[100]]] (* Zak Seidov, Apr 10 2011 *)

a=0; Table[a=a+Prime[k], {k, 100}] (* Zak Seidov, Apr 16 2011 *)

PROG

(PARI) A007504(n) = sum(k=1, n, prime(k)) \\ Michael B. Porter, Feb 26 2010

(MAGMA) [0] cat [&+[ NthPrime(k): k in [1..n]]: n in [1..50]];  // Bruno Berselli, Apr 11 2011 (adapted by Vincenzo Librandi, Nov 27 2015 - after Hasler's change on Mar 05 2014)

(Haskell)

a007504 n = a007504_list !! n

a007504_list = scanl (+) 0 a000040_list

-- Reinhard Zumkeller, Oct 01 2014, Oct 03 2011

CROSSREFS

Cf. A000041, A034386, A111287, A013916, A013918 (primes), A045345, A050247, A050248, A068873, A073619, A034387, A014148, A014150, A178138, A254784, A254858.

See A122989 for the value of Sum_{n >= 1} 1/a(n).

Sequence in context: A056871 A246883 A174910 * A172059 A172435 A049688

Adjacent sequences:  A007501 A007502 A007503 * A007505 A007506 A007507

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane, Robert G. Wilson v

EXTENSIONS

More terms from Stefan Steinerberger, Apr 11 2006

a(0)=0 prepended by M. F. Hasler, Mar 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 28 16:04 EDT 2017. Contains 285578 sequences.