The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008296 Triangle of Lehmer-Comtet numbers of first kind. 8
 1, 1, 1, -1, 3, 1, 2, -1, 6, 1, -6, 0, 5, 10, 1, 24, 4, -15, 25, 15, 1, -120, -28, 49, -35, 70, 21, 1, 720, 188, -196, 49, 0, 154, 28, 1, -5040, -1368, 944, 0, -231, 252, 294, 36, 1, 40320, 11016, -5340, -820, 1365, -987, 1050, 510, 45, 1, -362880, -98208, 34716, 9020, -7645, 3003, -1617, 2970, 825, 55, 1, 3628800 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Triangle arising in expansion of ((1+x)log(1+x))^n. Also the Bell transform of (-1)^(n-1)*(n-1)! if n>1 else 1 adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 16 2016 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139. LINKS Alois P. Heinz, Rows n = 1..141, flattened H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y = x^x, Rocky Mountain J. Math. Volume 26, Number 2 (1996), 615-625. D. H. Lehmer, Numbers Associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, pp. 461-475. FORMULA E.g.f. for a(n, k): (1/k!)[ (1+x)*log(1+x) ]^k. - Len Smiley Left edge is (-1)*n!, for n >= 2. Right edge is all 1's. a(n+1, k) = n*a(n-1, k-1) + a(n, k-1) + (k-n)*a(n, k). a(n, k) = Sum_{l} binomial(l, k)*k^(l-k)*stirling1(n, l). From Peter Bala, Mar 14 2012: (Start) E.g.f.: exp(t*(1 + x)*log(1 + x)) = sum {n = 0..inf} R(n,t)*x^n/n! = 1 + t*x + (t+t^2)x^2/2! + (-t+3*t^2+t^3)x^3/3! + .... Cf. A185164. The row polynomials R(n,t) are of binomial type and satisfy the recurrence R(n+1,t) = (t-n)*R(n,t) + t*d/dt(R(n,t)) + n*t*R(n-1,t) with R(0,t) = 1 and R(1,t) = t. Inverse array is A039621. (End) EXAMPLE Triangle begins:    1;    1,  1;   -1,  3,   1;    2, -1,   6,  1;   -6,  0,   5, 10,  1;   24,  4, -15, 25, 15, 1;   ... MAPLE with(combinat): for n from 1 to 20 do for k from 1 to n do printf(`%d, `, sum(binomial(l, k)*k^(l-k)*stirling1(n, l), l=k..n)) od: od: MATHEMATICA a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n-2)!; a[n_, n_] = 1; a[n_, k_] := a[n, k] = (n-1) a[n-2, k-1] + a[n-1, k-1] + (k-n+1) a[n-1, k]; Flatten[Table[a[n, k], {n, 1, 12}, {k, 1, n}]][[1 ;; 67]] (* Jean-François Alcover, Apr 29 2011 *) PROG (PARI) {T(n, k) = if( k<1 || k>n, 0, n! * polcoeff(((1 + x) * log(1 + x + x * O(x^n)))^k / k!, n))}; /* Michael Somos, Nov 15 2002 */ (Sage) # uses[bell_matrix from A264428] # Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle. bell_matrix(lambda n: (-1)^(n-1)*factorial(n-1) if n>1 else 1, 7) # Peter Luschny, Jan 16 2016 CROSSREFS Cf. A039621, A185164. Diagonals give A000142, A045406, A000217, A059302. Row sums give A005727. T(2n,n) give A298511. Sequence in context: A131918 A010123 A039620 * A140185 A229341 A106790 Adjacent sequences:  A008293 A008294 A008295 * A008297 A008298 A008299 KEYWORD sign,tabl,easy,nice AUTHOR EXTENSIONS More terms from James A. Sellers, Jan 26 2001 Edited by N. J. A. Sloane at the suggestion of Andrew Robbins, Dec 11 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 22:24 EDT 2021. Contains 342856 sequences. (Running on oeis4.)