login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039621
Triangle of Lehmer-Comtet numbers of 2nd kind.
6
1, -1, 1, 4, -3, 1, -27, 19, -6, 1, 256, -175, 55, -10, 1, -3125, 2101, -660, 125, -15, 1, 46656, -31031, 9751, -1890, 245, -21, 1, -823543, 543607, -170898, 33621, -4550, 434, -28, 1, 16777216, -11012415, 3463615, -688506, 95781, -9702, 714, -36, 1
OFFSET
1,4
COMMENTS
Also the Bell transform of (-n)^n adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 16 2016
LINKS
D. H. Lehmer, Numbers Associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, pp. 461-475.
FORMULA
(k-1)!*a(n, k) = Sum_{i=0..k-1}((-1)^(n-k-i)*binomial(k-1, i)*(n-i-1)^(n-1)).
a(n,k) = (-1)^(n-k)*T(k,n-k,n-k), n>=k, where T(n,k,m)=m*T(n,m-1,k)+T(n-1,k,m+1), T(n,0,m)=1. - Vladimir Kruchinin, Mar 07 2020
EXAMPLE
The triangle T(n, k) begins:
[1] 1;
[2] -1, 1;
[3] 4, -3, 1;
[4] -27, 19, -6, 1;
[5] 256, -175, 55, -10, 1;
[6] -3125, 2101, -660, 125, -15, 1;
[7] 46656, -31031, 9751, -1890, 245, -21, 1;
[8] -823543, 543607, -170898, 33621, -4550, 434, -28, 1;
MAPLE
R := proc(n, k, m) option remember;
if k < 0 or n < 0 then 0 elif k = 0 then 1 else
m*R(n, k-1, m) + R(n-1, k, m+1) fi end:
A039621 := (n, k) -> (-1)^(n-k)*R(k-1, n-k, n-k):
seq(seq(A039621(n, k), k = 1..n), n = 1..9); # Peter Luschny, Jun 10 2022 after Vladimir Kruchinin
MATHEMATICA
a[1, 1] = 1; a[n_, k_] := 1/(k-1)! Sum[((-1)^(n-k-i)*Binomial[k-1, i]*(n-i-1)^(n-1)), {i, 0, k-1}];
Table[a[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* Jean-François Alcover, Jun 03 2019 *)
PROG
(PARI) tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(sum(i = 0, k-1, (-1)^(n-k-i)*binomial(k-1, i)*(n-i-1)^(n-1))/(k-1)!, ", "); ); print(); ); } \\ Michel Marcus, Aug 28 2013
(Sage) # uses[bell_matrix from A264428]
# Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle.
bell_matrix(lambda n: (-n)^n, 7) # Peter Luschny, Jan 16 2016
(Maxima)
T(n, k, m):=if k<0 or n<0 then 0 else if k=0 then 1 else m*T(n, k-1, m)+T(n-1, k, m+1);
a(n, k):=if n<k then 0 else (-1)^(n-k)*T(k, n-k, n-k); /* Vladimir Kruchinin, Mar 07 2020
CROSSREFS
A008296 (matrix inverse), A354794 (variant), A045531 (column |a(n, 2)|).
Cf. A185164.
Sequence in context: A208057 A298673 A245732 * A142158 A203412 A217756
KEYWORD
tabl,sign
AUTHOR
STATUS
approved