login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014545
Numbers k such that the k-th Euclid number A006862(k) = 1 + (Product of first k primes) is prime.
45
0, 1, 2, 3, 4, 5, 11, 75, 171, 172, 384, 457, 616, 643, 1391, 1613, 2122, 2647, 2673, 4413, 13494, 31260, 33237, 304723, 365071, 436504, 498865
OFFSET
1,3
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 211, p. 61, Ellipses, Paris 2008.
LINKS
C. K. Caldwell, Primorial Primes.
H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
Benny Lim, Prime Numbers Generated From Highly Composite Numbers, Parabola (2018) Vol. 54, Issue 3.
Eric Weisstein's World of Mathematics, Euclid Number
Eric Weisstein's World of Mathematics, Primorial Prime
Eric Weisstein's World of Mathematics, Integer Sequence Primes
FORMULA
a(n+1) = A000720(A005234(n)). - M. F. Hasler, May 31 2018
EXAMPLE
a(1) = 0 because the (empty) product of 0 primes is 1, plus 1 yields the prime 2.
prime(4413) = 42209 and Primorial(4413) + 1 = 42209# + 1 is a 18241-digit prime.
prime(13494) = 145823 and Primorial(13494) + 1 = 145823# + 1 is a 63142-digit prime.
MAPLE
P:= 1:
p:= 1:
count:= 0:
for n from 1 to 1000 do
p:= nextprime(p);
P:= P*p;
if isprime(P+1) then
count:= count+1;
A[count]:= n;
fi
od:
seq(A[i], i=1..count); # Robert Israel, Nov 04 2015
MATHEMATICA
Flatten[Position[Rest[FoldList[Times, 1, Prime[Range[180]]]]+1, _?PrimeQ]] (* Harvey P. Dale, May 04 2012 *) (* this program generates the first 9 positive terms of the sequence; changing the Range constant to 33237 will generate all 23 terms above, but it will take a long time to do so *)
PROG
(PARI) is(n)=ispseudoprime(prod(i=1, n, prime(i))+1) \\ Charles R Greathouse IV, Mar 21 2013
(PARI) P=1; n=0; forprime(p=1, 10^5, if(ispseudoprime(P+1), print1(n", ")); n=n+1; P*=p; ) \\ Hans Loeblich, May 10 2019
CROSSREFS
Cf. A005234 (values of p such that 1 + product of primes <= p is prime).
Cf. A018239 (primorial plus 1 primes).
Sequence in context: A280206 A190783 A136367 * A379046 A158930 A330263
KEYWORD
nonn,nice,hard,more
EXTENSIONS
More terms from Labos Elemer
a(21) from Arlin Anderson (starship1(AT)gmail.com), Oct 20 2000
a(22)-a(23) from Eric W. Weisstein, Mar 13 2004 (based on information in A057704)
Offset and first term changed by Altug Alkan, Nov 27 2015
a(24) from Jeppe Stig Nielsen, Aug 08 2024
a(25) from Jeppe Stig Nielsen, Sep 01 2024
a(26) from Jeppe Stig Nielsen, Sep 24 2024
a(27) from Jeppe Stig Nielsen, Nov 10 2024
STATUS
approved