login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078009 a(0)=1, for n>=1 a(n)=sum(k=0,n,5^k*N(n,k)) where N(n,k) =1/n*C(n,k)*C(n,k+1) are the Narayana numbers (A001263). 11
1, 1, 6, 41, 306, 2426, 20076, 171481, 1500666, 13386206, 121267476, 1112674026, 10318939956, 96572168916, 910896992856, 8650566601401, 82644968321226, 793753763514806, 7659535707782916, 74225795172589006, 722042370787826076 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

More generally coefficients of (1+m*x-sqrt(m^2*x^2-(2*m+2)*x+1))/(2*m*x) are given by : a(n)=sum(k=0,n,(m+1)^k*N(n,k)).

a(n) is the series reversion of x(1-5x)/(1-4x); a(n+1) is the series reversion of x/(1+6x+5x^2); a(n+1) counts (6,5)-Motzkin paths of length n, where there are 6 colors available for the H(1,0) steps and 5 for the U(1,1) steps. - Paul Barry, May 19 2005

The Hankel transform of this sequence is 5^C(n+1,2) . - Philippe Deléham, Oct 29 2007

a(n) is the number of Schroder paths of semilength n in which there are no (2,0)-steps at level 0 and at a higher level they come in 4 colors. Example: a(2)=6 because we have UDUD, UUDD, UBD, UGD, URD, and UYD, where U=(1,1), D=(1,-1), while B, G, R, and Y are, respectively, blue, green, red, and yellow (2,0)-steps. - Emeric Deutsch, May 02 2011

Shifts left when INVERT transform applied five times. - Benedict W. J. Irwin, Feb 03 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

FORMULA

G.f.: (1+4*x-sqrt(16*x^2-12*x+1))/(10*x)

a(n) = Sum_{k=0..n} A088617(n, k)*5^k*(-4)^(n-k) . - Philippe Deléham, Jan 21 2004

With offset 1 : a(1)=1, a(n)=-4*a(n-1)+5*sum(i=1, n-1, a(i)*a(n-i)) - Benoit Cloitre, Mar 16 2004

a(n+1) = Sum_{k=0..floor(n/2)} C(n, 2*k)*C(k)*6^(n-2k)*5^k; - Paul Barry, May 19 2005

a(n) = ( 6*(2*n-1)*a(n-1) - 16*(n-2)*a(n-2) ) / (n+1) for n>=2, a(0) = a(1) = 1 . - Philippe Deléham, Aug 19 2005

a(n) = upper left term in M^n, M = the production matrix:

1, 1

5, 5, 5

1, 1, 1, 1

5, 5, 5, 5, 5

1, 1, 1, 1, 1, 1

...

- Gary W. Adamson, Jul 08 2011

a(n) ~ sqrt(10+6*sqrt(5))*(6+2*sqrt(5))^n/(10*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012

a(n) = A127848(n) for n>0. - Philippe Deléham, Apr 03 2013

G.f.: 1/(1 - x/(1 - 5*x/(1 - x/(1 - 5*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017

MAPLE

A078009_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;

for w from 1 to n do a[w] := a[w-1]+5*add(a[j]*a[w-j-1], j=1..w-1) od;

convert(a, list) end: A078009_list(20); # Peter Luschny, May 19 2011

MATHEMATICA

Table[SeriesCoefficient[(1+4*x-Sqrt[16*x^2-12*x+1])/(10*x), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2012 *)

PROG

(PARI) a(n)=sum(k=0, n, 5^k/n*binomial(n, k)*binomial(n, k+1))

CROSSREFS

Cf. A001003, A007564, A059231, A127848.

Sequence in context: A152107 A143023 * A127848 A113573 A083161 A077147

Adjacent sequences:  A078006 A078007 A078008 * A078010 A078011 A078012

KEYWORD

nonn

AUTHOR

Benoit Cloitre, May 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 02:54 EST 2017. Contains 294840 sequences.