login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175136 Triangle T(n,k) read by rows: number of LCO forests of size n with k leaves, 1 <= k <= n. 12
1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 17, 12, 4, 1, 16, 46, 44, 20, 5, 1, 32, 120, 150, 90, 30, 6, 1, 64, 304, 482, 370, 160, 42, 7, 1, 128, 752, 1476, 1412, 770, 259, 56, 8, 1, 256, 1824, 4344, 5068, 3402, 1428, 392, 72, 9, 1, 512, 4352, 12368, 17285, 14000, 7168, 2436 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

From Johannes W. Meijer, May 06 2011: (Start)

The Row1, Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Kn3, Kn4 and Ca1 triangle sums link A175136 with several sequences, see the crossrefs. For the definitions of these triangle sums see A180662.

It is remarkable that the coefficients of the right hand columns of A175136, and subsequently those of triangle A175136, can be generated with the aid of the row coefficients of A091894. For the fourth, fifth and sixth right hand columns see A162148, A190048 and A190049. The a(n) formulas of the right hand columns lead to an explicit formula for the T(n,k), see the formulas and the second Maple program. (End)

Triangle T(n,k), 1 <= k <= n, read by rows, given by (0,1,1,0,1,1,0,1,1,0,1,1,0,1,...) DELTA (1,0,0,1,0,0,1,0,0,1,0,0,1,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 29 2011.

T(n,k) is the number of noncrossing partitions of n containing k runs, where a block forms a run if it consists of an interval of integers. For example, T(4,2)=6 counts 1/234, 12/34, 123/4, 1/24/3, 13/2/4, 14/2/3. - David Callan, Oct 14 2012

LINKS

Table of n, a(n) for n=1..62.

David Callan, A bijection on Dyck paths and its cycle structure, El. J. Combinat. 14 (2007) # R28.

David Callan and Emeric Deutsch, The Run Transform, arXiv:1112.3639 [math.CO], 2011.

K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.

FORMULA

G.f.: (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/(2*x).

T(n,k) = Sum_{k1=0..floor((n-k)/2)} A091894(n-k, k1)*binomial(n-k1-1, n-k), 1 <= k <= n. - Johannes W. Meijer, May 06 2011

EXAMPLE

Triangle starts

    1;

    1,    1;

    2,    2,    1;

    4,    6,    3,    1;

    8,   17,   12,    4,    1;

   16,   46,   44,   20,    5,    1;

   32,  120,  150,   90,   30,    6,    1;

   64,  304,  482,  370,  160,   42,    7,    1;

  128,  752, 1476, 1412,  770,  259,   56,    8,    1;

Triangle (0,1,1,0,1,1,0,...) DELTA (1,0,0,1,0,0,1,...) begins:

  1;

  0,  1;

  0,  1,  1;

  0,  2,  2,  1;

  0,  4,  6,  3,  1;

  0,  8, 17, 12,  4,  1; ... - Philippe Deléham, Oct 29 2011

MAPLE

lco := proc(siz, leav) (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/2/x ; coeftayl(%, x=0, siz ) ; coeftayl(%, y=0, leav ) ; end proc: seq(seq(lco(n, k), k=1..n), n=1..9) ;

T := proc(n, k): add(A091894(n-k, k1)*binomial(n-k1-1, n-k), k1=0..floor((n-k)/2)) end: A091894 := proc(n, k): if n=0 and k=0 then 1 elif n=0 then 0 else 2^(n-2*k-1)* binomial(n-1, 2*k) * binomial(2*k, k)/(k+1) fi end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, May 06 2011, revised Nov 23 2012

MATHEMATICA

A091894[n_, k_] := 2^(n - 2*k - 1)*Binomial[n - 1, 2*k]*(Binomial[2*k, k]/(k + 1)); t[n_, k_] := Sum[A091894[n - k, k1]*Binomial [n - k1 - 1, n - k], {k1, 0, (n - k)/2}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten(* Jean-François Alcover, Jun 13 2013, after Johannes W. Meijer *)

CROSSREFS

Triangle columns: A000012, A000027, A002378, A162148, A190048, A190049, A011782, A190050, A190051.

Triangle sums (see the comments): A000108 (Row1), A005043 (Related to Kn11, Kn12, Kn13 and Kn4), A007477 (Related to Kn21, Kn22, Kn23 and Kn3), A099251 (Kn4), A166300 (Ca1). - Johannes W. Meijer, May 06 2011

Cf. A196182

Sequence in context: A080928 A068957 A119468 * A091869 A112307 A228336

Adjacent sequences:  A175133 A175134 A175135 * A175137 A175138 A175139

KEYWORD

nonn,tabl

AUTHOR

R. J. Mathar, Feb 21 2010

EXTENSIONS

Variable names changed by Johannes W. Meijer, May 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 17:24 EDT 2018. Contains 316392 sequences. (Running on oeis4.)