login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038148 Number of 3-infinitary divisors of n: if n = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a <= b in its ternary expansion everywhere that the corresponding r(i) has a digit b, then d is a 3-infinitary-divisor of n. 6
1, 2, 2, 3, 2, 4, 2, 2, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 2, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 4, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 4, 4, 4, 4, 4, 2, 12, 2, 4, 6, 3, 4, 8, 2, 6, 4, 8, 2, 6, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 4, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Multiplicative: If e = sum d_k 3^k, then a(p^e) = prod (d_k+1). - Christian G. Bower, May 19 2005

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]

J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]

J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]

Index entries for sequences computed from exponents in factorization of n

FORMULA

a(1) = 1; for n > 1, a(n) = A006047(A067029(n)) * a(A028234(n)). [After Christian G. Bower's 2005 comment.] - Antti Karttunen, May 28 2017

EXAMPLE

2^3*3 is a 3-infinitary-divisor of 2^5*3^2 because 2^3*3 = 2^10*3^1 and 2^5*3^2 = 2^12*3^2 in ternary expanded power. All corresponding digits satisfy the condition. 1 <= 1, 0 <= 2, 1 <= 2.

MAPLE

A038148 := proc(n) if n= 1 then 1; else ifa := ifactors(n)[2] ;

a := 1; for f in ifa do e := convert(op(2, f), base, 3) ; a := a*mul(d+1, d=e) ; end do: end if; end proc:

seq(A038148(n), n=1..50) ; # R. J. Mathar, Feb 08 2011

MATHEMATICA

a[1] = 1; a[n_] := (k = 1; Do[k = k * Times @@ (IntegerDigits[f, 3] + 1), {f, FactorInteger[n][[All, 2]]}]; k); Table[a[n], {n, 1, 102}](* Jean-François Alcover, Feb 03 2012, after R. J. Mathar *)

PROG

(PARI)

A006047(n) = { my(m=1, d); while(n, d = (n%3); m *= (1+d); n = (n-d)/3); m; };

A038148(n) = factorback(apply(e -> A006047(e), factorint(n)[, 2])); \\ (After A037445) - Antti Karttunen, May 28 2017

(Scheme) (define (A038148 n) (if (= 1 n) n (* (A006047 (A067029 n)) (A038148 (A028234 n))))) ;; Antti Karttunen, May 28 2017

CROSSREFS

Cf. A006047, A037445, A038182, A074848.

Sequence in context: A035213 A083901 A274517 * A141829 A111336 A083902

Adjacent sequences:  A038145 A038146 A038147 * A038149 A038150 A038151

KEYWORD

nonn,nice,easy,mult

AUTHOR

Yasutoshi Kohmoto

EXTENSIONS

More terms from Naohiro Nomoto, Jun 21 2001

Data section further extended to 105 terms by Antti Karttunen, May 28 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 03:33 EDT 2019. Contains 326139 sequences. (Running on oeis4.)