login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058071 A Fibonacci triangle: triangle T(n,k) in which n-th row consists of the numbers F(k)F(n+2-k), where F() are the Fibonacci numbers, for n >= 0, 0<=k<=n+1. 13
1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 4, 3, 5, 8, 5, 6, 6, 5, 8, 13, 8, 10, 9, 10, 8, 13, 21, 13, 16, 15, 15, 16, 13, 21, 34, 21, 26, 24, 25, 24, 26, 21, 34, 55, 34, 42, 39, 40, 40, 39, 42, 34, 55, 89, 55, 68, 63, 65, 64, 65, 63, 68, 55, 89, 144, 89, 110, 102, 105, 104, 104, 105 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Or, multiplication table of the positive Fibonacci numbers read by antidiagonals.

Or, triangle of products of nonzero Fibonacci numbers.

Row sums are A001629 (Fibonacci numbers convolved with themselves.). The main diagonal and first subdiagonal are Fibonacci numbers, for other entries T(n,k) = T(n-1,k) + T(n-2,k). The central numbers form A006498. - Gerald McGarvey, Jun 02 2005

Alternating row sums = (1,0,3,0,8,...), given by F(2n) if n even, else zero.

Row n = edge-counting vector for the Fibonacci cube F(n+1) embedded in the natural way in the hypercube Q(n+1). - Emanuele Munarini, Apr 01 2008

The augmentation of A058071 is the triangle A193595.  To fit the definition of augmented triangle at A103091, it is helpful to represent A058071 using p(n,k)=F(k+1)*F(n+1-k) for 0<=k<=n.  [From Clark Kimberling, Jul 31 2011]

REFERENCES

B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 27.

C. Cobeli and A. Zaharescu, Promenade around Pascal Triangle-Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1, 2013, 73-98; http://rms.unibuc.ro/bulletin/pdf/56-1/PromenadePascalPart1.pdf. - From N. J. A. Sloane, Feb 16 2013

H. Hosoya, "Fibonacci Triangle", The Fibonacci Quarterly, 14;2, 1976, 173-178.

S. Klavzar, I. Peterin Edge-counting vectors, Fibonacci cubes and Fibonacci triangle, Publ. Math. Debrecen 71/3-4 (2007), 267-278.

Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Chap. 15, Hosoya's Triangle, Wiley, New York, 2001.

T. V. Trif, Solution to Problem 10706 proposed by J. G. Propp, Amer. Math. Monthly, 107 (Nov. 2000), p. 866-867.

LINKS

Emanuele Munarini and Reinhard Zumkeller, Rows n = 0..120 of table, flattened

FORMULA

Row n: F(1)F(n), F(2)F(n-1), ..., F(n)F(1)

G.f.: T(x,y) = 1/((1-x-x^2)(1-xy-x^2y^2)). Recurrence: T(n+4,k+2) = T(n+3,k+2) + T(n+3,k+1) + T(n+2,k+2) - T(n+2,k+1) + T(n+2,k) - T(n+1,k+1) - T(n+1,k) - T(n,k) - Emanuele Munarini, Apr 01 2008

T(n,k) = A104763(n+1,k+1) * A104763(n+1,n+1-k). - Reinhard Zumkeller, Aug 15 2013

EXAMPLE

Rows 1,2,3,4,5:

1

1 1

2 1 2

3 2 2 3

5 3 4 3 5

MATHEMATICA

row[n_] := Table[Fibonacci[k]*Fibonacci[n-k+1], {k, 1, n}]; Table[row[n], {n, 1, 12}] // Flatten (* Jean-Fran├žois Alcover, Dec 16 2013 *)

PROG

(Haskell)

a058071 n k = a058071_tabl !! n !! k

a058071_row n = a058071_tabl !! n

a058071_tabl = map (\fs -> zipWith (*) fs $ reverse fs) a104763_tabl

-- Reinhard Zumkeller, Aug 15 2013

CROSSREFS

Cf. A000045, A003991, A098356.

Sequence in context: A003984 A087061 A082860 * A174961 A104889 A117910

Adjacent sequences:  A058068 A058069 A058070 * A058072 A058073 A058074

KEYWORD

nonn,easy,tabl,nice

AUTHOR

N. J. A. Sloane, Nov 24 2000

EXTENSIONS

More terms from James A. Sellers, Nov 27 2000

Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 17 20:01 EDT 2014. Contains 240655 sequences.