login
A058072
Numbers k such that sigma(k) divides sigma(k+1), where sigma(k) is sum of positive divisors of k.
7
1, 5, 14, 125, 206, 957, 1253, 1334, 1364, 1634, 1673, 1919, 2685, 2759, 2974, 3127, 4364, 5191, 7615, 11219, 12035, 14841, 18873, 19358, 20145, 24957, 27089, 33998, 36566, 42818, 43817, 47795, 48559, 49955, 50039, 56564, 56975, 58373, 58463
OFFSET
1,2
COMMENTS
The quotient (sigma(k+1)/sigma(k)) is equal to 1, 2, 3, 4 or 5 for the first 5000 terms. - Donovan Johnson, Oct 21 2012
LINKS
EXAMPLE
5 is included because sigma(5) = 6 divides sigma(6) = 12.
MATHEMATICA
Select[Range[10^5], Divisible[DivisorSigma[1, # + 1], DivisorSigma[1, #]] &] (* Michael De Vlieger, Sep 03 2017 *)
PROG
(PARI) isok(n) = !(sigma(n+1) % sigma(n)); \\ Michel Marcus, Sep 04 2017
CROSSREFS
Sequence in context: A317154 A283785 A267351 * A027304 A070135 A317037
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 11 2000
EXTENSIONS
More terms from Benoit Cloitre, Jul 27 2002
STATUS
approved