|
|
A007890
|
|
Summarize the previous term! (in decreasing order).
|
|
6
|
|
|
1, 11, 21, 1211, 1231, 131221, 132231, 232221, 134211, 14131231, 14231241, 24132231, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221, 14233221
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..28.
Onno M. Cain, Sela T. Enin, Inventory Loops (i.e. Counting Sequences) have Pre-period 2 max S_1 + 60, arXiv:2004.00209 [math.NT], 2020.
|
|
FORMULA
|
From Seiichi Manyama, Aug 18 2020: (Start)
a(1) = 1 and a(n) = A244112(a(n-1)) for n > 1.
a(n) = 14233221 for n >= 13. (End)
|
|
EXAMPLE
|
For example, the term after 131221 is obtained by saying "one 3, two 2's, three 1's", which gives 13-22-31, i.e. 132231.
|
|
MATHEMATICA
|
Nest[Append[#, FromDigits@ Flatten@ Map[Reverse, Tally@ ReverseSort@ IntegerDigits@ #[[-1]] ] ] &, {1}, 24] (* Michael De Vlieger, Jul 15 2020 *)
|
|
CROSSREFS
|
Cf. A005150, A034003, A036058, A244112.
Sequence in context: A005151 A098155 A098154 * A063850 A005150 A001388
Adjacent sequences: A007887 A007888 A007889 * A007891 A007892 A007893
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Mira Bernstein
|
|
STATUS
|
approved
|
|
|
|