

A050143


Array T by antidiagonals: T(i,j)=Sum{T(h,k): 0<=h<=i1, 0<=k<=j}, T(i,0)=1 for i >= 0, T(0,j)=0 for j >= 1.


9



1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 4, 7, 1, 0, 1, 5, 12, 15, 1, 0, 1, 6, 18, 32, 31, 1, 0, 1, 7, 25, 56, 80, 63, 1, 0, 1, 8, 33, 88, 160, 192, 127, 1, 0, 1, 9, 42, 129, 280, 432, 448, 255, 1, 0, 1, 10, 52, 180, 450, 832, 1120, 1024, 511, 1, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,9


COMMENTS

Formatted as a triangular array with offset (0,8), it is [0, 1, 0, 1, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 1, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938 .  Philippe Deléham, Nov 05 2006
The sum of the first two columns gives the powers of 2, that is, Sum[T(i,j),j=0..1] = 2^i, i>=0. On the other hand, for i>=1 and j>=2, T(i,j) is the number of lattice paths of i1 upsteps (1,1) and j1 downsteps (1,1) in which each downstepfree vertex is colored red or blue. A downstepfree vertex is one not incident with a downstep. For example, dots indicate the downstepfree vertices in the path .U.U.UDU.UDDU., and with i=j=2, T(2,2) = 4 counts UD, *UD, DU, DU*, where asterisks indicate the red vertices.  David Callan, Aug 27 2011


LINKS

Table of n, a(n) for n=1..68.


EXAMPLE

Antidiagonals, each starting on top row: {1}; {0,1}; {0,1,1}; {0,1,3,1}; ...


CROSSREFS

Antidiagonal sums are oddindexed Fibonacci numbers (A001519).
Signed alternating antidiagonal sums are F(n)2, as in A001911.
T(n, 1)=1+2^n=A000225(n). T(n+2, 2)=4*A001792(n). Cf. A050147, A050148.
Cf. A055807 (mirror array).
Sequence in context: A264435 A085391 A280880 * A103495 A261699 A285574
Adjacent sequences: A050140 A050141 A050142 * A050144 A050145 A050146


KEYWORD

nonn,tabl


AUTHOR

Clark Kimberling


STATUS

approved



