The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099463 Bisection of tribonacci numbers. 8
 0, 1, 2, 7, 24, 81, 274, 927, 3136, 10609, 35890, 121415, 410744, 1389537, 4700770, 15902591, 53798080, 181997601, 615693474, 2082876103, 7046319384, 23837527729, 80641778674, 272809183135, 922906855808, 3122171529233 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform of A099462. a(n+1) gives row sums of number triangle A114123 or A184883. Partial sums are A113300. - Paul Barry, Feb 07 2006 LINKS Index entries for linear recurrences with constant coefficients, signature (3,1,1) FORMULA G.f.: x(1-x)/(1-3x-x^2-x^3); a(n) = Sum_{k=0..n} binomial(n, k)*Sum_{j=0..floor((k-1)/2)} binomial(j, k-2j-1)*4^j. From Paul Barry, Feb 07 2006: (Start) a(n) = 3a(n-1) + a(n-2) + a(n-3); a(n) = Sum_{k=0..n} Sum_{j=0..n} C(2k,n-k-j)*C(n-k,j)*2^(n-k-j). (End) a(n)/a(n-1) tends to 3.38297576..., the square of the tribonacci constant A058265. - Gary W. Adamson, Feb 28 2006 If p[1]=2, p[2]=3, p[i]=4, (i>2), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A. - Milan Janjic, May 02 2010 MATHEMATICA LinearRecurrence[{3, 1, 1}, {0, 1, 2}, 30] (* or *) Join[{0}, Mean/@ Partition[ LinearRecurrence[ {1, 1, 1}, {1, 1, 1}, 60], 2]] (* Harvey P. Dale, Apr 02 2012 *) CROSSREFS Cf. A000073. Sequence in context: A038765 A027126 A027128 * A021000 A003480 A020727 Adjacent sequences:  A099460 A099461 A099462 * A099464 A099465 A099466 KEYWORD easy,nonn AUTHOR Paul Barry, Oct 16 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 09:37 EDT 2020. Contains 334620 sequences. (Running on oeis4.)