login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074193
Sum of determinants of 2nd order principal minors of powers of the matrix ((1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)).
2
6, -1, -3, -1, 17, -16, -15, 13, 81, -127, -58, 175, 329, -885, -31, 1424, 833, -5543, 2181, 9233, -2298, -31025, 27893, 49495, -54879, -150416, 245697, 204965, -526887, -570895, 1801670, 407711, -3882303, -946397, 11542929, -3442672, -24121039, 10317745, 64959629, -56727711, -127083514
OFFSET
0,1
COMMENTS
From Kai Wang, Oct 21 2020: (Start)
Let f(x) = x^4 - x^3 - x^2 - x - 1 be the characteristic polynomial for Tetranacci numbers (A000078). Let {x1,x2,x3,x4} be the roots of f(x). Then a(n) = (x1*x2)^n + (x1*x3)^n + (x1*x4)^n + (x2*x3)^n + (x2*x4)^n + (x3*x4)^n.
Let g(y) = y^6 + y^5 + 2*y^4 + 2*y^3 - 2*y^2 + y - 1 be the characteristic polynomial for a(n). Let {y1,y2,y3,y4,y5,y6} be the roots of g(y). Then a(n) = y1^n + y2^n + y3^n + y4^n + y5^n + y6^n. (End)
FORMULA
a(n) = -a(n-1)-2a(n-2)-2a(n-3)+2a(n-4)-a(n-5)+a(n-6).
G.f.: (6+5x+8x^2+6x^3-4x^4+x^5)/(1+x+2x^2+2x^3-2x^4+x^5-x^6).
abs(a(n)) = abs(A074453(n)). - Joerg Arndt, Oct 22 2020
MATHEMATICA
CoefficientList[Series[(6+5*x+8*x^2+6*x^3-4*x^4+x^5)/(1+x+2*x^2+2*x^3-2*x^4+x^5-x^6), {x, 0, 50}], x]
PROG
(PARI) polsym(x^6 + x^5 + 2*x^4 + 2*x^3 - 2*x^2 + x - 1, 44) \\ Joerg Arndt, Oct 22 2020
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 20 2002
STATUS
approved