OFFSET
0,1
COMMENTS
From Kai Wang, Oct 21 2020: (Start)
Let f(x) = x^4 - x^3 - x^2 - x - 1 be the characteristic polynomial for Tetranacci numbers (A000078). Let {x1,x2,x3,x4} be the roots of f(x). Then a(n) = (x1*x2)^n + (x1*x3)^n + (x1*x4)^n + (x2*x3)^n + (x2*x4)^n + (x3*x4)^n.
Let g(y) = y^6 + y^5 + 2*y^4 + 2*y^3 - 2*y^2 + y - 1 be the characteristic polynomial for a(n). Let {y1,y2,y3,y4,y5,y6} be the roots of g(y). Then a(n) = y1^n + y2^n + y3^n + y4^n + y5^n + y6^n. (End)
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..5052
Kai Wang, Identities, generating functions and Binet formula for generalized k-nacci sequences, 2020.
Index entries for linear recurrences with constant coefficients, signature (-1,-2,-2,2,-1,1).
FORMULA
a(n) = -a(n-1)-2a(n-2)-2a(n-3)+2a(n-4)-a(n-5)+a(n-6).
G.f.: (6+5x+8x^2+6x^3-4x^4+x^5)/(1+x+2x^2+2x^3-2x^4+x^5-x^6).
abs(a(n)) = abs(A074453(n)). - Joerg Arndt, Oct 22 2020
MATHEMATICA
CoefficientList[Series[(6+5*x+8*x^2+6*x^3-4*x^4+x^5)/(1+x+2*x^2+2*x^3-2*x^4+x^5-x^6), {x, 0, 50}], x]
PROG
(PARI) polsym(x^6 + x^5 + 2*x^4 + 2*x^3 - 2*x^2 + x - 1, 44) \\ Joerg Arndt, Oct 22 2020
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 20 2002
STATUS
approved