login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274664 Sum of n-th powers of the roots of x^3 + 11*x^2 - 4*x - 1. 3
3, -11, 129, -1460, 165655, -187926, 2131986, -24186985, 274396853, -3112981337, 35316195134, -400655674969, 4545364223858, -51566312967180, 585010243859443, -6636832570098735, 75293632933556677, -854192282305658944, 9690652804526376357, -109938656346079219026, 1247233638742671255770 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the other half for A274663.

a(n) is x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial x^3 + 11*x^2 - 3*x - 1.

x1 = (cos(2*Pi/7)*cos(4*Pi/7))/(cos(Pi/7))^2,

x2 = -(cos(4*Pi/7)*cos(Pi/7))/(cos(2*Pi/7))^2,

x3 = -(cos(Pi/7) *cos(2*Pi/7))(cos(4*Pi/7))^2.

LINKS

Colin Barker, Table of n, a(n) for n = 0..900

Index entries for linear recurrences with constant coefficients, signature (-11,4,1).

FORMULA

a(0) = 3, a(1) = -11, a(2) = 129; thereafter a(n) = -11*a(n-1) + 4*a(n-2) + a(n-3).

a(n) = ((cos(2*Pi/7)*cos(4*Pi/7))/(cos(Pi/7))^2)^n +(-(cos(4*Pi/7)*cos(Pi/7))/(cos(2*Pi/7))^2)^n +(-(cos(Pi/7)*cos(2*Pi/7))/(cos(4*Pi/7))^2)^n.

G.f.: (3+22*x-4*x^2+149090*x^4+1639990*x^5-596360*x^6-149090*x^7) / (1+11*x-4*x^2-x^3). - Colin Barker, Jul 03 2016

PROG

(PARI) Vec((3+22*x-4*x^2+149090*x^4+1639990*x^5-596360*x^6-149090*x^7) / (1+11*x-4*x^2-x^3) + O(x^20)) \\ Colin Barker, Jul 03 2016

(PARI) first(n)=my(x='x); polsym(x^3+11*x^2-4*x-1, n) \\ Charles R Greathouse IV, Jul 10 2016

CROSSREFS

Cf. A274663.

Sequence in context: A113258 A113848 A287429 * A219620 A201611 A088075

Adjacent sequences:  A274661 A274662 A274663 * A274665 A274666 A274667

KEYWORD

sign,easy

AUTHOR

Kai Wang, Jul 01 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 17:24 EST 2019. Contains 329126 sequences. (Running on oeis4.)