This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050278 Pandigital numbers: numbers containing the digits 0-9. Version 1: each digit appears exactly once. 70
 1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689, 1023457698, 1023457869, 1023457896, 1023457968, 1023457986, 1023458679, 1023458697, 1023458769, 1023458796, 1023458967, 1023458976, 1023459678, 1023459687, 1023459768 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is a finite sequence with 9*9!=3265920 terms: a(9*9!) = 9876543210. A171102 is the infinite version, where each digit must appear at least once. Subsequence of A134336 and of A178403; A178401(a(n)) = 1. - Reinhard Zumkeller, May 27 2010 Smallest prime factors: A178775(n) = A020639(a(n)). - Reinhard Zumkeller, Jun 11 2010 A178788(a(n)) = 1. - Reinhard Zumkeller, Jun 30 2010 All these numbers are composite because the sum of the digits, 45, is divisible by 9. - T. D. Noe, Nov 09 2011 This is the 10th row of the array T(k,n) = n-th number in which the number of distinct base-10 digits is k. A031969 is the 4th row. A220063 is the 5th row. A220076 is the 6th row. A218019 is the 7th row. A219743 is the 8th row. - Jonathan Vos Post, Dec 05 2012 From Hieronymus Fischer, Feb 13 2013: (Start) The sum of all terms is 9!*49444444440 = 17942399998387200. General formula for the sum of all terms of the finite sequence of the corresponding base-p pandigital numbers with p places: sum = ((p^2 - p - 1)*(p^p - 1) + p - 1)*(p-2)!/2. General formula for the sum of all terms (interpreted as decimal permutational numbers with exactly d+1 different digits from the range 0..d < 10): sum = (d+1)!*((10d - 1)*10^d - d + 1)/18, d > 1. (End) LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Pandigital Number FORMULA A050278 = 9*A171571. - M. F. Hasler, Jan 12 2012 A050278(n) = A171102(n) for n <= 9*9!. MATHEMATICA Select[ FromDigits@# & /@ Permutations[ Range[0, 9]], # > 10^9 &, 20] (* Robert G. Wilson v, May 30 2010, Jan 17 2012 *) PROG (PARI) A050278(n)={ my(b=vector(9, k, 1+(n+9!-1)%(k+1)!\k!), t=b-1, d=vector(9, i, i+(i>t)-1)); for(i=1, 8, t=10*t+d[b[9-i]]; d=vecextract(d, Str("^"b[9-i]))); t*10+d} \\ M. F. Hasler, Jan 15 2012 (PARI) is_A050278(n)={ 9<#vecsort(Vecsmall(Str(n)), , 8) & n<1e10 } /* assuming that n is a nonnegative integer */ /* M. F. Hasler, Jan 10 2012 */ (PARI) a(n)=my(d=numtoperm(10, n+9!-1)); sum(i=1, #d, (d[i]-1)*10^(#d-i)) \\ David A. Corneth, Jun 01 2014 (Python) from itertools import permutations A050278_list = [int(''.join(d)) for d in permutations('0123456789', 10) if d != '0'] # Chai Wah Wu, May 25 2015 CROSSREFS Cf. A171102, A050288, A050289. Cf. A199630, A199631, A114260, A199632, A199633. Cf. A031969, A050278, A220063, A220076, A218019, A219743. Sequence in context: A061604 A302096 A171102 * A051018 A020667 A154566 Adjacent sequences:  A050275 A050276 A050277 * A050279 A050280 A050281 KEYWORD nonn,base,fini AUTHOR Eric W. Weisstein, Dec 11 1999 EXTENSIONS Edited by N. J. A. Sloane, Sep 25 2010 to clarify that this is a finite sequence STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 17:13 EDT 2019. Contains 321345 sequences. (Running on oeis4.)