login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106273 Discriminant of the polynomial x^n - x^(n-1) -...- x - 1. 13
1, 5, -44, -563, 9584, 205937, -5390272, -167398247, 6042477824, 249317139869, -11597205023744, -601139006326619, 34383289858207744, 2151954708695291177, -146323302326154543104, -10742330662077208945103, 846940331265064719417344, 71373256668946058057974997 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This polynomial is the characteristic polynomial of the Fibonacci and Lucas n-step sequences. These discriminants are prime for n=2, 4, 6, 26, 158 (A106274). It appears that the term a(2n+1) always has a factor of 2^(2n). With that factor removed, the discriminants are prime for odd n=3, 5, 7, 21, 99, 405. See A106275 for the combined list.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.

Eric Weisstein's World of Mathematics, Fibonacci n-Step

Eric Weisstein's World of Mathematics, Polynomial Discriminant

FORMULA

a(n) = (-1)^(n*(n+1)/2) * ((n+1)^(n+1)-2*(2*n)^n)/(n-1)^2. - Max Alekseyev, May 05 2005

MATHEMATICA

Discriminant[p_?PolynomialQ, x_] := With[{n=Exponent[p, x]}, Cancel[((-1)^(n(n-1)/2) Resultant[p, D[p, x], x])/Coefficient[p, x, n]^(2n-1)]]; Table[Discriminant[x^n-Sum[x^i, {i, 0, n-1}], x], {n, 20}]

PROG

(PARI) {a(n)=(-1)^(n*(n+1)/2)*((n+1)^(n+1)-2*(2*n)^n)/(n-1)^2}  \\ Max Alekseyev, May 05 2005

(PARI) a(n)=poldisc('x^n-sum(k=0, n-1, 'x^k)); \\ Joerg Arndt, May 04 2013

CROSSREFS

Cf. A086797 (discriminant of the polynomial x^n-x-1), A000045, A000073, A000078, A001591, A001592 (Fibonacci n-step sequences), A000032, A001644, A073817, A074048, A074584 (Lucas n-step sequences), A086937, A106276, A106277, A106278 (number of distinct zeros of these polynomials for n=2, 3, 4, 5).

Sequence in context: A215648 A195242 A243697 * A052803 A201923 A222059

Adjacent sequences:  A106270 A106271 A106272 * A106274 A106275 A106276

KEYWORD

sign

AUTHOR

T. D. Noe, May 02 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 14:56 EDT 2018. Contains 316282 sequences. (Running on oeis4.)