OFFSET
0,4
COMMENTS
Define the 4 X 4 tridiagonal unit-primitive matrix (see [Jeffery]) M=A_{9,1}=[0,1,0,0; 1,0,1,0; 0,1,0,1; 0,0,1,1]; then a(n)=[M^n]_(3,4)=[M^n]_(4,3).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..3650
Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
L. E. Jeffery, Unit-primitive matrices
Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
Index entries for linear recurrences with constant coefficients, signature (0,3,1).
FORMULA
a(n) = 3*a(n-2)+a(n-3).
a(n) = A187498(3*n+1).
MATHEMATICA
LinearRecurrence[{0, 3, 1}, {0, 1, 1}, 36] (* or *)
CoefficientList[Series[x (1 + x)/(1 - 3 x^2 - x^3), {x, 0, 35}], x] (* Michael De Vlieger, Mar 10 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Mar 18 2011
STATUS
approved