login
A188022
Expansion of x*(1+x) / (1-3*x^2-x^3).
1
0, 1, 1, 3, 4, 10, 15, 34, 55, 117, 199, 406, 714, 1417, 2548, 4965, 9061, 17443, 32148, 61390, 113887, 216318, 403051, 762841, 1425471, 2691574, 5039254, 9500193, 17809336, 33539833, 62928201, 118428835, 222324436, 418214706, 785402143, 1476968554
OFFSET
0,4
COMMENTS
Define the 4 X 4 tridiagonal unit-primitive matrix (see [Jeffery]) M=A_{9,1}=[0,1,0,0; 1,0,1,0; 0,1,0,1; 0,0,1,1]; then a(n)=[M^n]_(3,4)=[M^n]_(4,3).
FORMULA
a(n) = 3*a(n-2)+a(n-3).
a(n) = A187498(3*n+1).
a(n) = A052931(n-2)+A052931(n-1). - R. J. Mathar, Mar 22 2011
MATHEMATICA
LinearRecurrence[{0, 3, 1}, {0, 1, 1}, 36] (* or *)
CoefficientList[Series[x (1 + x)/(1 - 3 x^2 - x^3), {x, 0, 35}], x] (* Michael De Vlieger, Mar 10 2020 *)
CROSSREFS
Cf. A094832 (bisection), A094833 (bisection).
Sequence in context: A055720 A054184 A307057 * A007007 A037952 A281903
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Mar 18 2011
STATUS
approved